First Principles Calculations of Stress-Induced Structural Changes of Supercooled Borosilicate Glass

Article Preview

Abstract:

Unlike the traditional silicate glasses, borosilicate glasses behave differently because of the addition of boron atoms. Extensive studies have been carried out to understand the abnormal function of boron in glass network. However, it is not clear how the atomic structure of borosilicate glass changes under loading. This paper investigates the behaviour of borosilicate glass under uniaxial compression with the aid of ab initio simulations. Sodium borosilicate glass having 160 atoms and a mass density of 2.51 g/cm3 with composition 3Na2O-B2O3-6SiO2 were equilibrated first at 3500K, then at 2500K, 1500K, 1200K, 1000K, 825K and 625K. Structural analysis showed that at higher temperatures the sodium borosilicate liquid does not have a specific structure. At around 825 K (i.e. around Tg), boron network and silicon network form and remain stable even at a temperature of 625 K. When the supercooled sample at 825K was subjected to uniaxial compression, the stress along the compression direction first increases and then decreases with a change in boron structure, which could modify the behaviour of the borosilicate glass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-404

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Stebbins, S.E. Ellsworth, Temperature effects on structure and dynamics in borate and borosilicate liquids: High-resolution and high-temperature NMR results, J Am Ceram Soc. 79 (1996) 2247-2256.

DOI: 10.1111/j.1151-2916.1996.tb08969.x

Google Scholar

[2] L. Pedesseau, S. Ispas, W. Kob, First-principles study of a sodium borosilicate glass-former. I. The liquid state, Phys Rev B. 91 (2015) 134201.

DOI: 10.1103/physrevb.91.134201

Google Scholar

[3] L. Pedesseau, S. Ispas, W. Kob, First-principles study of a sodium borosilicate glass-former. II. The glass state, Phys Rev B. 91 (2015) 134202.

DOI: 10.1103/physrevb.91.134202

Google Scholar

[4] L. Cormier, O. Majerus, D.R. Neuville, G. Calas, Temperature-induced structural modifications between alkali borate glasses and melts, J Am Ceram Soc. 89 (2006) 13-19.

DOI: 10.1111/j.1551-2916.2005.00657.x

Google Scholar

[5] S. Sen, Temperature induced structural changes and transport mechanisms in borate, borosilicate and boroaluminate liquids: high-resolution and high-temperature NMR results, J Non-Cryst Solids. 253 (1999) 84-94.

DOI: 10.1016/s0022-3093(99)00346-4

Google Scholar

[6] P.J. Bray, Nuclear Magnetic-Resonance Studies of Glass Structure, J Non-Cryst Solids. 73 (1985) 19-45.

DOI: 10.1016/0022-3093(85)90335-7

Google Scholar

[7] W.J. Dell, P.J. Bray, S.Z. Xiao, B-11 Nmr-Studies and Structural Modeling of Na2o-B2o3-Sio2 Glasses of High Soda Content, J Non-Cryst Solids. 58 (1983) 1-16.

DOI: 10.1016/0022-3093(83)90097-2

Google Scholar

[8] B.C. Bunker, D.R. Tallant, R.J. Kirkpatrick, G.L. Turner, Multinuclear Nuclear-Magnetic-Resonance and Raman Investigation of Sodium Borosilicate Glass Structures, Phys Chem Glasses. 31 (1990) 30-41.

Google Scholar

[9] G.L. Turner, K.A. Smith, R.J. Kirkpatrick, E. Oldfield, B-11 Nuclear-Magnetic-Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass, J Magn Reson. 67 (1986) 544-550.

DOI: 10.1016/0022-2364(86)90391-4

Google Scholar

[10] T. Edwards, T. Endo, J.H. Walton, S. Sen, Observation of the transition state for pressure-induced BO3 -> BO4 conversion in glass, Science. 345 (2014) 1027-1029.

DOI: 10.1126/science.1256224

Google Scholar

[11] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation, J Phys-Condens Mat. 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[12] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys Rev Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[13] N. Troullier, J.L. Martins, Efficient Pseudopotentials for Plane-Wave Calculations, Phys Rev B. 43 (1991) 1993-(2006).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[14] H.J. Monkhorst, J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys Rev B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] S. Nose, A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods, J Chem Phys. 81 (1984) 511-519.

Google Scholar

[16] S. Nose, A Molecular-Dynamics Method for Simulations in the Canonical Ensemble, Mol Phys. 52 (1984) 255-268.

Google Scholar

[17] M. Parrinello, A. Rahman, Crystal-Structure and Pair Potentials - a Molecular-Dynamics Study, Phys Rev Lett. 45 (1980) 1196-1199.

DOI: 10.1103/physrevlett.45.1196

Google Scholar

[18] M. Parrinello, A. Rahman, Polymorphic Transitions in Single-Crystals - a New Molecular-Dynamics Method, J Appl Phys. 52 (1981) 7182-7190.

DOI: 10.1063/1.328693

Google Scholar

[19] L. Pedesseau, S. Ispas, W. Kob, First-principles study of a sodium borosilicate glass-former. I. The liquid state, Phys Rev B. 91 (2015).

DOI: 10.1103/physrevb.91.134201

Google Scholar