The Effect of Point Defects Induced by Fast Neutron Irradiation on the Thermal Conductivity of Boron Carbide

Article Preview

Abstract:

The thermal conduction behavior of the neutron absorbing ceramic boron carbide in the initial stage of the irradiation was analyzed and a classical thermal conduction model was used to estimate the variation of the thermal conductivity in this paper. The calculated thermal conductivity using the model shows a large degration in the initial stage of irradiation. As the burnup increases, the thermal conductivity turns to be free of temperature dependence. These calculated results are consistent well with the expermental data of thermal conductivity of the irradiated boron carbide, which may suggest that the variation of the thermal conductivity of boron carbide is predominantly determined by the point defects scattering in the initial stage of irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-158

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Maruyama, S. Onose, T. Kaito, H. Horiuchi, Effect of fast neutron irradiation on the properties of boron carbide pellet, J. Nucl. Sci. Technol. 34 (1997) 1006-1014.

DOI: 10.1080/18811248.1997.9733777

Google Scholar

[2] T. Inoue, T. Onchi, H. Kôyama, H. Suzuki, Irradiation effects of boron carbide used as control rod elements in fast breeder reactors, J. Nucl. Mater. 74 (1978) 114-122.

DOI: 10.1016/0022-3115(78)90539-1

Google Scholar

[3] G.W. Hollenberg, J.A. Basmajian, Crack propagation in irradiated B4C induced by swelling and thermal gradients. J. Am. Ceram. Soc. 65 (1982) 179-181.

DOI: 10.1111/j.1151-2916.1982.tb10398.x

Google Scholar

[4] T. Stoto, N. Housseau, L. Zuppiroli, B. Kryger, Swelling and microcracking of boron carbide subjected to fast neutron irradiations, J. Appl. Phys. 68 (1990) 3198-3206.

DOI: 10.1063/1.346370

Google Scholar

[5] Y. Morohashi, T. Maruyama, T. Donomae, Y. Tachi, S. Onose, Neutron irradiation effect on isotopically tailored 11B4C, J. Nucl. Sci. Technol. 45 (2008) 867-872.

DOI: 10.1080/18811248.2008.9711488

Google Scholar

[6] G.W. Hollenberg, J.L. Jackson, J.A. Basmajian, In-reactor measurement of neutron absorber performance, Nucl. Technol. 49 (1980) 92-101.

DOI: 10.13182/nt80-a32510

Google Scholar

[7] M. Bouchacourt, F. Thevenot. The correlation between the thermoelectri properties and stoichiometry in the boron carbide phase B4C-B10. 5C, J. Mater. Sci. 20 (1985) 1237-1247.

DOI: 10.1007/bf01026319

Google Scholar

[8] J. Wu, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, M. I. Osendi, Thermal conductivity of ceramics in the ZrO2-GdO1. 5 system, J. Mater. Res. 17 (2002) 3193-3200.

DOI: 10.1557/jmr.2002.0462

Google Scholar

[9] M. C. Roufosse, P. G. Klemens, Lattice thermal conductivity of minerals at high temperatures, J. Geophys. Res. 79 (1974) 703-705.

DOI: 10.1029/jb079i005p00703

Google Scholar

[10] P. G. Klemens, Thermal resistance due to point defects at high temperatures, Phys. Rev. 119 (1960) 507-509.

DOI: 10.1103/physrev.119.507

Google Scholar

[11] C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, JD. Wang, Z. X. Qu, M.H. Fang, Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model, Phys. Rev. B 74 (2006) 144109.

Google Scholar