Research on Optical Property of Black-Colored Zirconia Ceramics by Photoluminescence, Raman and Visible Reflectivity Spectra

Article Preview

Abstract:

White color zirconia ceramics were produced by sintering of coprecipitated 3Y-TZP powder in air. By annealing at reducing atmosphere, black-color zirconia ceramics with different shades were then realized. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), UV-visible spectrum (UV-vis), photoluminescence spectra (PL) and Raman spectroscopy, respectively. UV-visible spectrum reveals that the ZrO2 samples under different reducing atmosphere have different reflectivity in 400-800nm. X-ray diffraction data confirms that the different annealing processes can result in the change of the corresponding crystal density. It is indicated that defects contributes to cell volume alteration. The PL and Raman spectra further indicates that these defects belong to oxygen vacancies and the concentration of oxygen vacancies have a strong influence on the shades of black-color zirconia ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-178

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Alessandro, L. Chris, C. Gabriele, F. Marco, Dental Mater. 27(2011) 97–108.

Google Scholar

[2] F. L. Qian, Z. P. Xie, J. L. Sun, F. Wang, J. Chin. Ceram. Soc. 8 (2011) 1290-1294.

Google Scholar

[3] M. Das, G. Sumana, R. Nagarajan, B.D. Malhotra, Appl. Phys. Lett. 96 (2010) 133703.

Google Scholar

[4] M. Boffelli, W. Zhu, M. Back, G. Sponchia, et al, J. Phys. Chem. A. 118 (2014) 9828-9836.

Google Scholar

[5] K. Smits, L. Grigorjeva, D. Millers, et al., J. Luminescence, 131 (2011) 2058–(2062).

Google Scholar

[6] R. Hahn, S. Berger, P. Schmuki, J Solid State Electrochem. 14 (2010) 285.

Google Scholar

[7] T. Merle, R. Guinebretiere, A. Mirgorodsky, and P. Quintard, Phys. Rev. 14 (2002) 144302.

Google Scholar

[8] H. Kan, O. Hideki, K. Junya, J. Phys. Rev.B. 71 (2005) 064111.

Google Scholar

[9] G. M. Rignanese, F. Detraux, X. Gonze, A. Pasquarello, Phys. Rev. B. 64 (2001) 134301.

Google Scholar

[10] Y.K. Voronko, M.A. Zufarov, B.V. Ignatyev, et al., Optikai Spektroskopiya 51 (1981) 569.

Google Scholar

[11] A. Feinberg, C. H. Perry, J. Phys. Chem. Solids. 42 (1981) 513-518.

Google Scholar

[12] C. Pecharroman, M. Ocana, C. J. Serna, J. Appl. Phys. 80, 3479 ~ (1996).

Google Scholar

[13] A. P. Mirgorodsky, M. B. Smirnov, P. Quintard, J. Phys. Chem. Solids 60, 985 ~(1999).

Google Scholar

[14] P. Bouvier, G. Lucazeau, J. Phys. Chem. Solids 61, 569~ (2000).

Google Scholar

[15] D. Simeone, J. L. Bechade, D. Gosset, et al., J. Nucl. Mater. 281 (2000) 171-181.

Google Scholar