[1]
S.V. Zaitsev, Y.V. Yermoolayeva, A.N. Gruzintsev, Geometry effect on spontaneous emission decay in nanosized Y2O3-Eu3+ particles, Opt. Mater. 37 (2014) 714-717.
DOI: 10.1016/j.optmat.2014.08.018
Google Scholar
[2]
R.E. Muenchausen, L.G. Jacobshon, B.L. Bennett, Effects of Tb doping on the photoluminescence of Y2O3: Tb nanophosphors, J. Lumin. 126 (2007) 838-842.
DOI: 10.1016/j.jlumin.2006.12.004
Google Scholar
[3]
S.T. Mukherjeea, V. Sudarsan, P.U. Sastry, Annealing effects on the microstructure of combustion synthesized Eu3+ and Tb3+ doped Y2O3 nanoparticles, J. Alloys Compd. 519 (2012) 9-14.
DOI: 10.1016/j.jallcom.2011.10.080
Google Scholar
[4]
Z.J. Wang, P. Wang, J.P. Zhong, Phase transformation and spectroscopic adjustment of Gd2O3: Eu3+ synthesized by hydrothermal method, J. Lumin. 152 (2014) 172-175.
DOI: 10.1016/j.jlumin.2013.11.040
Google Scholar
[5]
E. Pavitra, Y.J. Su, A facile large-scale synthesis and luminescence properties of Gd2O3: Eu3+ nanoflowers, Mater. Lett. 90 (2013) 134-137.
DOI: 10.1016/j.matlet.2012.09.022
Google Scholar
[6]
A. Gupta, N. Brahme, D.P. Bisen, Electroluminescence and photoluminescence of rare earth (Eu, Tb) doped Y2O3 nanophosphor, J. Lumin. 155 (2014) 112-118.
DOI: 10.1016/j.jlumin.2014.06.003
Google Scholar
[7]
S. Mukherjee, V. Sudarsan, P.U. Sastry, Morphology and luminescence characteristics of combustion synthesized Y2O3: (Eu, Dy, Tb) nanoparticles with various amino-acid fuels, J. Lumin. 145 (2014) 318-323.
DOI: 10.1016/j.jlumin.2013.07.058
Google Scholar
[8]
K. Mishra, S.K. Singh, A.K. Singh, Optical characteristics and charge transfer band excitation of Dy3+ doped Y2O3 phosphor, Mater. Res. Bull. 47 (2012) 1339-1344.
DOI: 10.1016/j.materresbull.2012.03.017
Google Scholar
[9]
T. Selvalakshmi, S. Sellaiyan, A. Uedonob, Investigation of defect related photoluminescence property of multicolour emitting Gd2O3: Dy3+ phosphor, RSC Adv. 4 (2014) 34257-34266.
DOI: 10.1039/c4ra07094a
Google Scholar
[10]
L.L. Peng, T. Han, H. Chen, Spectroscopic properties of Gd2O3: Dy3+ nanocrystals. J. Rare Earths 31(3) (2013) 235-240.
DOI: 10.1016/s1002-0721(12)60264-6
Google Scholar
[11]
S.Y. Chen, J.M. Lin, J.H. Wu, Facile synthesis of Y2O3: Dy3+ nanorods and its application in dye-sensitized solar cells, Appl. Surf. Sci. 293 (2014) 202-206.
DOI: 10.1016/j.apsusc.2013.12.134
Google Scholar
[12]
J.K. Li, J.G. Li, S.H. Liu, Greatly enhanced Dy3+ emission via efficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu3+, J. Mater. Chem. C 1 (2013) 7614-7622.
DOI: 10.1039/c3tc31413h
Google Scholar
[13]
J.B. Kumar Prasanna, G. Ramgopal, Y.S. Vidya, Green synthesis of Y2O3: Dy3+ nanophosphor with enhanced photocatalytic activity, Spectrochim. Acta. A 149 (2015) 687-697.
DOI: 10.1016/j.saa.2015.05.007
Google Scholar
[14]
J.G. Li, X.D. Li, X.D. Sun, Monodispersed colloidal spheres for uniform Y2O3: Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping, J. Phys. Chem. C 112 (2008) 11707-11716.
DOI: 10.1021/jp802383a
Google Scholar
[15]
S. Som, S.K. Sharma, S.P. Lochab, Ion induced modification of bandgap and CIE parameters in Y2O3: Dy3+ phosphor, Ceram. Int. 39 (2013) 7693-7701.
DOI: 10.1016/j.ceramint.2013.03.022
Google Scholar
[16]
R.X. Balderas, R.M. Martinez, Z.A. Rivera, Photo and cathodoluminescence characteristics of dysprosium doped yttrium oxide nanoparticles prepared by Polyol method, J. Lumin. 146 (2014) 497-501.
DOI: 10.1016/j.jlumin.2013.10.041
Google Scholar