The Investigation of Perovskite LaCo0.6Ni0.4O3-δ as Cathode Interface Contact Material for Intermediate Temperature Solid Oxide Fuel Cells

Article Preview

Abstract:

The goal of this study is to identify LaCo0.6Ni0.4O3-δ (LCN) as reliable cathode contact material for intermediate temperature solid oxide fuel cells (SOFC). LCN was prepared through the polymeric steric entrapment precursor route and calcined at 800 °C which shows single perovskite phase. Area specific resistance (ASR) of LCN was measured at 750 °C. The investigation shows that the ASR can be maintained about 50 mΩ·cm2 for 100 hours operation, and presented ASR stability within 10th thermal cycles. The excellent performance of LCN is attributed to good interface adhesion between LCN and interconnect alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-244

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.G. Yang, G.G. Xia, P. Singh, Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells, J. Power Sources 155 (2006) 246-252.

DOI: 10.1016/j.jpowsour.2005.05.010

Google Scholar

[2] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (2000) 305-313.

DOI: 10.1016/s0167-2738(00)00452-5

Google Scholar

[3] Z. Tao, H.P. Ding, X.H. Ding, The co-doping effect of Sm and In on ceria for electrolyte application in IT-SOFC, J. Alloys Compd. 663 (2016) 750-754.

DOI: 10.1016/j.jallcom.2015.12.164

Google Scholar

[4] H. Moon, S.D. Kim, S.H. Hyun, H. S. Kim, Development of IT-SOFC unit cells with anode- supported thin electrolytes via tap casting and co-firing, Int. J. Hydrogen Energy 33 (2008) 1758-1768.

DOI: 10.1016/j.ijhydene.2007.12.062

Google Scholar

[5] E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science. 334 (6058) 935-939.

DOI: 10.1126/science.1204090

Google Scholar

[6] Z.G. Yang, G.G. Xia, X.H. Li, (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications, Int. J. Hydrogen Energy 32 (2007) 3648-3654.

DOI: 10.1016/j.ijhydene.2006.08.048

Google Scholar

[7] W.X. Kao, T.N. Lin, M.C. Lee, Fabrication and characterization of the anode-supported solid oxide fuel cell with Ni current collector layer, J. Ceram. Soc. Jpn. 123 (2015) 217-221.

DOI: 10.2109/jcersj2.123.217

Google Scholar

[8] S.P. Simner, M.D. Anderson, L.R. Pederson, Performance variability of La(Sr)FeO3 SOFC cathode with Pt, Ag, and Au current collectors, J. Electrochem. Soc. 152(2005) A1851-A1859.

DOI: 10.1149/1.1995687

Google Scholar

[9] Z.G. Lu, J.H. Zhu, Thermal evaporation of pure Ag in SOFC-relevant environments, Electrochem. Solid-State Lett. 10 (2007) B179-B182.

DOI: 10.1149/1.2767433

Google Scholar

[10] B. Chalmers, R. King, R. Shuttleworth, The thermal etching of silver, Proc. R. Soc. London, Ser. A, 193 (1948) 465-483.

Google Scholar

[11] X. Montero, F. Tietz, D. Stover, Comparative study of perovskites as cathode contact materials between an La0. 8Sr0. 2FeO3 cathode and a Crofer22APU interconnect in solid oxide fuel cells, J. Power Sources 188 (2009) 148-155.

DOI: 10.1016/j.jpowsour.2008.11.083

Google Scholar

[12] S.C. Tucker, L. Cheng, L.C. DeJonghe, Selection of cathode contact materials for solid oxide fuel cells, J. Power Sources 196 (2011) 8313-8322.

DOI: 10.1016/j.jpowsour.2011.06.044

Google Scholar

[13] F.Z. Wang, D. Yan, W.Y. Zhang, LaCo0. 6Ni0. 4O3-δ as cathode contact material for intermediate temperature solid oxide fuel cells, Int. J. Hydrogen Energy 38 (2013) 646-651.

DOI: 10.1016/j.ijhydene.2012.06.052

Google Scholar

[14] F.W. Poulsen, Defect chemistry modeling of oxygen-stoichiometry, vacancy concentrations and conductivity of (La1-xSrx)yMnO3±δ, Solid State Ionics 129 (2000) 145-162.

DOI: 10.1016/s0167-2738(99)00322-7

Google Scholar

[15] R.N. Basu, F. Tietz, O. Teller, LaNi0. 6Fe0. 4O3 as a cathode contact material for solid oxide fuel cells, J. Solid State Electrochem. 7 (2003) 416-420.

DOI: 10.1007/s10008-002-0330-3

Google Scholar

[16] S.P. Jiang, J.G. Love, L. Apateanu, Effect of contact between electrode and current collector on the performance of solid oxide fuel cells, Solid State Ionics 160 (2003) 15-26.

DOI: 10.1016/s0167-2738(03)00127-9

Google Scholar

[17] C. Wang, X.S. Xin, Y.J. Xu, Easy sintering of silver doped lanthanum strontium manganite current collector for solid oxide fuel cells, Int. J. Hydrogen Energy 36 (2011) 7683-7687.

DOI: 10.1016/j.ijhydene.2011.03.127

Google Scholar

[18] B. Hua, J. Pu, Development of a Fe-Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells, J. Power Sources 195 (2010) 2782-2788.

DOI: 10.1016/j.jpowsour.2009.08.077

Google Scholar

[19] B. Hua, J. Pu, The effect of Mn on the oxidation behavior and electrical conductivity of Fe-17Cr alloys in solid oxide fuel cell cathode atmosphere, J. Power Sources 196 (2011) 7627-7638.

DOI: 10.1016/j.jpowsour.2011.05.007

Google Scholar