Domain Walls and Thermal Aging Stability of (K,Na)NbO3-Based Ceramics in Tetragonal Phase

Article Preview

Abstract:

Thermal depoling behaviors of (K0.50Na0.50)0.94Li0.06NbO3 and (K0.50Na0.50)0.96Li0.04(Nb0.85Ta0.15)O3 ceramics possessing tetragonal crystalline structure at room temperature have been studied. By comparing the difference in these two compositions during annealing treatment, we provide visual evidence that different types of ferroelectric domain walls play different roles in the thermal depoling. The study results show that the drop in piezoelectric properties can be mainly attributed to the motion of 180o domain walls below the Curie temperature. When the thermal aging temperature is close to the Curie temperature, the reduction of piezoelectric properties is caused by the movement of 90o domain walls. The (K0.50Na0.50)0.96Li0.04(Nb0.85Ta0.15)O3 ceramic with fewer 180o domains shows very good thermal ageing stability from the low experimental temperature limit of −60 °C up to high temperatures close to TC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-229

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, et al., Nature, 4 (2004) 84-91.

Google Scholar

[2] Y. P. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85 (2004) 4121-4123.

Google Scholar

[3] M. Eriksson, H. Yan, G. Viola et al., J. Am. Ceram. Soc., 94 (2011) 3391–3396.

Google Scholar

[4] E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett., 87 (2005) 182905-3.

Google Scholar

[5] G. Z. Zang, J. F. Wang, H. C. Chen, et al., Appl. Phys. Lett., 88 (2006) 212908-3.

Google Scholar

[6] H. Yamada, T. Matsuoka, H. Kozuka et al., J. Appl. Phys., 117 (2015) 214102-6.

Google Scholar

[7] S. J. Zhang, R. Xia, T. R. Shrout, et al., J. Appl. Phys., 100 (2006) 104108-6.

Google Scholar

[8] Y. F. Chang, Z. P. Yang, D. F. Ma, et al., J. Appl. Phys., 104 (2008) 024109-8.

Google Scholar

[9] F. Azough, M. Wegrzyn, R. Freer et al., J. Europ. Ceram. Soc., 31 (2011) 569-576.

Google Scholar

[10] K. Wang, J. F. Li, and N. Liu, Appl. Phys. Lett., 93 (2008) 092904-3.

Google Scholar

[11] J. Wu, Y. Wang, D. Xiao et al., Appl. Phys. Lett., 91 (2007) 132914-3.

Google Scholar

[12] R. Z. Zuo, J. Fu, and D. Y. Lv, J. Am. Ceram. Soc., 92 (2009) 283-5.

Google Scholar

[13] Thomas A. Skidmore, Tim P. Comyn, and Steven J. Milne, J. Appl. Phys., 94 (2009) 222902-3.

Google Scholar

[14] J.G. Hao, Z.J. Xu, R.Q. Chu, et al., Journal of Electronic Materials, 39 (2010) 347-354.

Google Scholar

[15] J. Fu, R. Z. Zuo, X. H. Wang, and L. T. Li, J. Phys. D: Appl. Phys., 42 (2009) 012006-4.

Google Scholar

[16] D. M. Lin, K. W. Kwok, and H. L. W. Chan, J. Appl. Phys. 102 (2007) 034102-7.

Google Scholar

[17] G. Arlt and N. A. Pertsev, J. Appl. Phys. 70 (1991) 2283-2289.

Google Scholar

[18] Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, J. Appl. Phys., 75 (1994) 454-459.

Google Scholar

[19] Junjun Wang, Limei Zheng, Bin Yang et al., Appl. Phys. Lett., 107 (2015) 072902-5.

Google Scholar

[20] Yu Huan, Xiaohui Wang, Jian Fang, and Longtu Li, J. Am. Ceram. Soc., 96 (2013) 3369–3371.

Google Scholar

[21] Arlt. G and Sasko. P, J. Appl. Phys., 51 (1980) 4956-4960.

Google Scholar

[22] R. L. Juárez and O. N. Peralta, J. Europ. Ceram. Soc., 31 (2011) 1861-1864.

Google Scholar

[23] Arlt. G, J. Mater. Sci., 25 (1990) 2655-2666.

Google Scholar

[24] J. G. Hao, W. F. Bai, J. W. Zhai, J. Am. Ceram. Soc., 95 (2012) 1998-(2006).

Google Scholar