Synthesis and Characterization of Pd/Ag/SiO2 Nano-Composite Materials

Abstract:

Article Preview

Pd/Ag/SiO2 sols and powder materials were prepared by adding AgNO3 and Pd (NO3)2·2H2O into a methyl-modified silica sol. Tetraethylorthosilicate and methyltriethoxysilane were used as the silica precursor for the sol-gel reaction. The obtained SiO2 sols and powder materials were characterized by sol particle size distribution, zeta potential analysis, UV-Vis spectra, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) measurement. It was found that most of the particle sizes of the prepared Pd/Ag/SiO2 sols are about 2~10 nm with narrow size distribution. The zeta potential of Pd/Ag/SiO2 sol with Pd/Ag molar ratio of 7.5/2.5 presents the highest value. The FTIR analysis substantiates that the Si-CH3 groups exist in the silica network and the formed Pd/Ag/SiO2 sol particles possess linear structure. XRD characterization indicates that the Pd2+ and Ag+ in the Pd/Ag/SiO2 materials had be reduced to Pd0 and Ag0, respectively, after annealed in a nitrogen atmosphere at 350°C.

Info:

Periodical:

Edited by:

Yiwang Bao, Danyu Jiang and Jianghong Gong

Pages:

204-209

Citation:

J. Yang et al., "Synthesis and Characterization of Pd/Ag/SiO2 Nano-Composite Materials", Key Engineering Materials, Vol. 726, pp. 204-209, 2017

Online since:

January 2017

Export:

Price:

$41.00

* - Corresponding Author

[1] R. Bose, S.K. Balasingam, S. Shin, et al, Langmuir. 31 (2015) 5220-5227.

[2] P. Li, Z. Wang, Z. Qiao, et al., J. Membr. Sci. 495 (2015) 130-168.

[3] Z. Luo, X. Cai, L. S. Wang, W.G. Feng, Chem. Eng. J. 187 (2012)357-366.

[4] H.W. Abu El Hawa, S.N. Paglieri, et al., J. Membr. Sci. 466 (2014) 151-160.

[5] P. Wang, T.S. Chung, J. Membr. Sci. 474 (2015) 39-56.

[6] K.Z. Donato, R.K. Donato, M. Lavorgna, et al., J. Sol-Gel Sci. Technol. 76 ( 2015) 414-427.

[7] I A. Rahman, V. Padavettan, J. Nanomater. 2012 (2012)1-15.

[8] S. Arunmetha, A. Karthik, S.R. Srither, et al., RSC Adv. 5 (2015) 47390-47397.

[9] N. Soltani, A. Bahrami, M. I. Pech-Canul, L.A. González, Chem. Eng. J. 264 (2015) 899-935.

[10] Y. Ji, H Y. Sohn, H.D. Jang, B. Wang, T A. Ring, J. Nanopart. Res. 17 (2015) 17.

[11] R.Y. Hong, B. Feng, Z. Q. Ren, et al., Can. J. Chem. Eng. 87 (2009) 143-156.

[12] M. Azizi, S. A. Mousavi, J. Mol. Struct. 1100(2015) 401-414.

[13] L. Liu, D.K. Wang, P. Kappen, et al. Chem. Chem. Phys. 17 (2015) 19500-19506.

[14] C.X.C. Lin, L.P. Ding, S. Smart, J.C.D.D. Costa, J. Colloid Interface Sci. 368 (2012) 70-76.

[15] D. Uhlmann, S. Smart, J.C.D.D. Costa, Sep. Purif. Technol. 76 (2010) 171-178.

[16] L. Liu, D. K Wang, D.L. Martens S. Smart, J.C.D.D. Costaa, J. Membr. Sci. 493 (2015) 470-477.

[17] M.T. Hove, A. Nijmeijer, L. Winnubst, Sep. Purif. Technol. 147 (2015) 372-378.

[18] H.L. Castricum, H F. Qureshi, A. Nijmeijer, L. Winnubst, J. Membr. Sci. 488 (2015) 121-128.

[19] S. Khanmohammadi, E. Taheri-Nassaj, Ceram. Int. 40 ( 2014) 9403-9411.

[20] T. Liu, J. Fang,S. Li, C. Wang, C. Ji, J. Ceram. Soc. Jpn. 123 (2015) 554-560.

[21] M. Kanezashin, S. Miyauchi, H. Nagasawa, et al., J. Membr. Sci. 466 (2014) 246-252.

[22] D. Yang, W. Zhang, B. Jiang, Y. Guo, Composites Part A. 55 (2013) 70-77.

[23] A. Darmawan, J. Motuzas, S. Smart, et al., Sep. Purif. Technol. 151 (2015) 284-291.

[24] S. Yun, S. Ted Oyama, J. Membr. Sci. 375 (2011) 28-45.

[25] Z.W. Dunbar, J. Power Sources. 297 (2015) 525-533.

[26] H.W.A.E. Hawa, S.N. Paglieri, C.C. Morris, et al., J. Membr. Sci. 466 (2014) 151-160.

[27] S.K. Ryi, J.S. Park, K.R. Hwang, et al., Int. J. Hydrogen Energy. 36 (2011) 13769-13775.

[28] N.A. Al-Mufachi, S. Nayebossadri, J.D. Speight, et al. J. Membr. Sci. 493 (2015) 580-588.

[29] H. Gharibi, M. Saadatinasab, A. Zolfaghari, J. Membr. Sci. 447 (2013) 355-361.

[30] N. Elbialy, N. Mohamed, A.S. Monem. J. Pharm. Biomed. Anal. 9 (2013)158-166.

[31] L. Liu, D.K. Wang, D.L. Martens, et al., J. Membr. Sci. 475 (2015) 425-432.