Heterojunction Structure ZnO/TiO2 Nanorods with Enhanced Photoelectrochemical Properties

Article Preview

Abstract:

This paper describes a simple two-step hydrothermal method for the design of heterojunction structure combined with TiO2 nanorods coated with ZnO nanoparticles. TiO2 nanorods on F-doped tin oxide (FTO) conducting glass are synthesized by hydrothermal method and ZnO coating is prepared through a two-step procedure. The XRD patterns confirm that the nanostructure consists of rutile TiO2 and wurtzite ZnO without any other impure phase. The FE-SEM results show that ZnO is uniformly distributing on the surface of TiO2 nanorods, forming a well-connecting heterojunction. PL studies and UV-vis absorption spectra present the enhanced optical performance of ZnO/TiO2 heterojunction. The heterojunction structure ZnO/TiO2 nanorods show excellent photoelectrochemical performance. The performance and the preparation parameters are also optimized accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-337

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Braiek, A. Brayek, A. Souissi, R. Chtourou, J. Alloys Compd. 653 (2015) 395-401.

Google Scholar

[2] J. Schrier, D.O. Demchenko, L.W. Wang, Nano Lett. 7 (2007) 2377-2382.

Google Scholar

[3] J. Zhou, L. Yin, H. Li, Z. Liu, et al., Mater. Sci. Semicond. Process. 40 (2015) 107-116.

Google Scholar

[4] S. Hu, B. Chi, J. Pu, L. Jian, J. Mater. Chem. A. 2 (2014) 19260-19267.

Google Scholar

[5] H.G. Yang, C.H. Sun, S.Z. Qiao, et al., Nature. 453 (2008) 638-U634.

Google Scholar

[6] G. Wang, Q. Wang, W. Lu, J. Li, J. Phys. Chem. B. 110 (2006) 22029-22034.

Google Scholar

[7] B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131 (2009) 3985-3990.

Google Scholar

[8] L. Cao, C. Wu, Q. Hu, T. Jin, B. Chi, J. Pu, L. Jian, J. Am. Ceram. Soc. 96 (2013) 549-554.

Google Scholar

[9] J. Wang, W.D. Zhang, W.X. Ouyang, Y.X. Yu, Mater. Lett. 154 (2015) 44-46.

Google Scholar

[10] I.S. Cho, Z. Chen, A.J. Forman, et al., Nano Lett. 11 (2011) 4978-4984.

Google Scholar

[11] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, et al., Sol. Energy Mater. Sol. Cells. 77 (2003) 229-237.

Google Scholar

[12] I.A. de Castro, J.A. de Oliveira, C. Ribeiro, Ceram. Int. 41 (2015) 3502-3510.

Google Scholar

[13] M. Kwiatkowski, I. Bezverkhyy, M. Skompska, J. Mater. Chem. A. 3 (2015) 12748-12760.

Google Scholar

[14] P. Tiwana, P. Docampo, L.M. Herz, ACS Nano. 5 (2011) 5158-5166.

Google Scholar

[15] R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B. 109 (2005) 24254-24259.

Google Scholar

[16] S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C. 117 (2013) 5558-5567.

Google Scholar

[17] S.A.M. Samsuri, M.Y.A. Rahman, A.A. Umar, et al., J. Mater. Sci. -Mater. Electron. 26 (2015) 4936-4943.

Google Scholar

[18] L. Wei, F. Li, S. Hu, H. Li, B. Chi, J. Pu, L. Jian, J. Am. Ceram. Soc. 98 (2015) 3173-3178.

Google Scholar

[19] N.J. Nicholas, G.V. Franks, W.A. Ducker, Crystengcomm. 14 (2012) 1232-1240.

Google Scholar

[20] J. Li, H.C. Zeng, Chem. Mater. 18 (2006) 4270-4277.

Google Scholar