Facile Synthesis and Photocatalytic Performance of W18O49 Nanorods

Article Preview

Abstract:

W18O49 nanorods photocatalyst was successfully synthesized by a facile pyrolyzing ammonium metatungstate in a reductive atmosphere of H2 (5 vol %)/Ar. The synthesized W18O49 nanorods were characterized by X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) absorption spectroscopy. The results show that W18O49 nanorods are about 190 nm in diameter and around 4.8 μm in length, and they possess the band-gap energy of 2.32 eV. Moreover the photocatalytic activity of W18O49 nanorods was evaluated by degrading methylene blue (MB) under visible light irradiation. The result illustrates that the W18O49 nanorods have a photodegradation efficiency of 60% for MB under the irradiation of xenon lamp (250 W, λ > 420 nm) for 2 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-364

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M. K. Reddy, C. Subrahmanyam, Green approach for wastewater treatment-degradation and mineralization of aqueous organic pollutants by discharge plasma, Ind. Eng. Chem. Res. 51 (2012) 11097-11103.

DOI: 10.1021/ie301122p

Google Scholar

[2] X. Q. Gao, F. Xiao, C. Yang, et al., Hydrothermal fabrication of W18O49 nanowire networks with superior performance for water treatment, J. Mater. Chem A. 1 (2013) 5831-5834.

DOI: 10.1039/c3ta10724h

Google Scholar

[3] V. Iliev, D. Tomova, S. Rakovsky, et al., Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation, J. Mol. Catal. A-Chem. 327 (2010) 51-57.

DOI: 10.1016/j.molcata.2010.05.012

Google Scholar

[4] C. Peng, L. Q. Ming, L. Ye, et al., Superior optical properties of Fe3+-W18O49 nanoparticles prepared by solution combustion synthesis, New J. Chem. 39 (2015) 1196-1201.

Google Scholar

[5] W. W. Zi, M. L. Xiao, J. W. Xiao, et al., Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities, J. Mater. Res. 29 (2014) 71-77.

DOI: 10.1557/jmr.2013.217

Google Scholar

[6] U. Pikaned, H. Viyada, et al., A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells, Electrochim. Acta 145 (2014) 27-33.

DOI: 10.1016/j.electacta.2014.08.096

Google Scholar

[7] T. C. Xue, B. S. Shi, S. Y. Yan, Synthesis of tungsten oxide nanorods as visible-light-driven photocatalysts, Adv. Mate. Res. 148-149 (2011) 963-966.

DOI: 10.4028/www.scientific.net/amr.148-149.963

Google Scholar

[8] K. Lee, W. S. Seo, J. T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods, J. Am. Chem. Soc. 125 (2003) 3408.

DOI: 10.1021/ja034011e

Google Scholar

[9] F. Gallea, Z. C. Li, Z. J. Zhang. Growth control of tungsten oxide nanostructures on planar silicon substrates, Appl. Phys. Lett. 89 (2006) 193111.

Google Scholar

[10] H. C. Lin, C. Y. Su, C. H. Chen. Direct growth of W18O49 nanorods on tungsten oxide films by rapid-annealing process, J. Sci. Innov. 2 (2012) 125-130.

Google Scholar

[11] W. L. Jian, Z. Jing, L. W. Jin, H. Y. Shu, Ultrathin W18O49 nanowire assemblies for electrochromic devices, Nano. Lett. 13 (2013) 3589-3593.

Google Scholar

[12] I. Kazeminezhad, R. Yousefi, Growth and characterization of ZnO/W18O49 heterostructures, Solid State Sci. 14 (2012) 349-353.

DOI: 10.1016/j.solidstatesciences.2011.12.001

Google Scholar

[13] J. Thangala, S. Vaddiraju, R. Bogale, R. Thruman, et al., Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires, Small 3 (2007) 890-1890.

DOI: 10.1002/smll.200600689

Google Scholar

[14] S. G. Chong, Y. Shu, Y. Mei, et al., Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, Inorg. Chem. 51 (2012) 4763-4771.

Google Scholar

[15] K. Alireza, D. C. S. Reza, H. Younes, et al., Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation, Ind. Eng. Chem. Res. 53 (2014) 1924-(1932).

DOI: 10.1021/ie402743u

Google Scholar

[16] S. Banerjee, S. C. Pillar, P. Falaras, et al., New Insights into the Mechanism of Visible Light Photocatalysis, J. Phys. Chem. Lett. 5 (2014) 2543-2554.

DOI: 10.1021/jz501030x

Google Scholar