Preparation and Anisotropic Lattice Thermal Expansion of Hexagonal Cordierite

Article Preview

Abstract:

The hexagonal cordierite was synthesized by the reverse coprecipitation-calcination method and characterized by powder X-ray diffraction. The lattice thermal expansion behavior of hexagonal cordierite was investigated by high temperature X-ray diffraction in the temperature range 298-1273 K. The lattice parameters of the hexagonal cordierite at different temperature were calculated by a least squares method. The hexagonal cordierite expressed anisotropic thermal expansion behavior with the average lattice thermal expansion coefficient were 2.13×10-6 K-1 along a or b axis and-1.03×10-6 K-1 along c axis from room temperature to 1273 K. The crystal structure of hexagonal cordierite at 298 K and 1273 K were refined by Rietveld method. The thermal expansion coefficient of the height of the [MgO6]-[AlO4] polyhedral layer is-1.8×10-6 K-1. Although the six-member ring expressed the normal positive thermal expansion along arbitrary direction, the height thermal expansion coefficient of the six-member ring is just 0.6×10-6 K-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

470-477

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M. Gómez, J.M. Gatica, J.C. Hernández-Garrido, G.A. Cifredo, M. Montes, O. Sanz, J.M. Rebled, H. Vidal, A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation, Appl. Catal. B-Environ., 144 (2014).

DOI: 10.1016/j.apcatb.2013.07.045

Google Scholar

[2] T. Ebadzadeh, Thermal shock resistance of mullite–cordierite refractories, Br. Ceram. Trans., 102 (2003) 66-68.

DOI: 10.1179/096797803225001542

Google Scholar

[3] M. Camerucci, G. Urretavizcaya, M. Castro, A. Cavalieri, Electrical properties and thermal expansion of cordierite and cordierite-mullite materials, J. Eur. Ceram. Soc., 21 (2001) 2917-2923.

DOI: 10.1016/s0955-2219(01)00219-9

Google Scholar

[4] B. Winkler, M.T. Dove, M. Leslie, Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals, Am. Mineral., 76 (1991) 313-331.

Google Scholar

[5] J.H. Wallace, H. Wenk, Structure variation in low cordierites, Am. Mineral., 65 (1980) 96.

Google Scholar

[6] J.P. Cohen, F. Ross, G. Gibbs, An X-ray and neutron diffraction study of hydrous low cordierite, Am. Mineral., 62 (1977) 67-78.

Google Scholar

[7] J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin, J. Alloys Compd., 482 (2009) 429-436.

DOI: 10.1016/j.jallcom.2009.04.044

Google Scholar

[8] K.B. Schwartz, D.B. Leong, R.L. McConville, Structural chemistry of synthetic cordierite: evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites, Phys. Chem. Miner., 20 (1994) 563-574.

DOI: 10.1007/bf00211852

Google Scholar

[9] P. Predecki, J. Haas, J. Faber, R.L. Hitterman, Structural aspects of the lattice thermal expansion of hexagonal cordierite, J. Am. Ceram. Soc., 70 (1987) 175-182.

DOI: 10.1111/j.1151-2916.1987.tb04954.x

Google Scholar

[10] B. Morosin, Structure and thermal expansion of beryl, Acta Cryst. B, 28 (1972) 1899-(1903).

Google Scholar

[11] H. Schulz, Thermal expansion of beta eucryptite, J. Am. Ceram. Soc., 57 (1974) 313-318.

Google Scholar

[12] D. Woodcock, P. Lightfoot, Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M= Li, Na, K), J. Mater. Chem., 9 (1999) 2907-2911.

DOI: 10.1039/a904193a

Google Scholar

[13] C. Stadord, High-temperature crystal chemistry of hydrous Mg-and Fe-cordierites, Am. Mineral., 64 (1979) 337-351.

Google Scholar

[14] D. Evans, G. Fischer, J. Geiger, F. Martin, Thermal expansions and chemical modifications of cordierite, J. Am. Ceram. Soc., 63 (1980) 629-634.

DOI: 10.1111/j.1151-2916.1980.tb09850.x

Google Scholar

[15] H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe, S. Udagawa, Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions, J. Am. Ceram. Soc., 69 (1986) 492-498.

DOI: 10.1111/j.1151-2916.1986.tb07451.x

Google Scholar

[16] J. Zhang, J. Yu, X. Cheng, S. Hou, Thermal expansion and solubility limits of cerium-doped lanthanum zirconates, J. Alloys Compd., 525 (2012) 78-81.

DOI: 10.1016/j.jallcom.2012.02.077

Google Scholar

[17] H. Wu, X. Lei, J. Zhang, J. Yu, S. Zhang, Lattice Thermal Expansion of the Solid Solutions (La1-xSmx)2Ce2O7, Mater. Res. Bull., 57 (2014) 320-324.

DOI: 10.1016/j.materresbull.2014.06.016

Google Scholar

[18] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2 (1969) 65-71.

Google Scholar

[19] E. Meagher, G. Gibbs, The polymorphism of cordierite; II, the crystal structure of indialite, The Canadian Mineralogist, 15 (1977) 43-49.

Google Scholar

[20] C. Howard, B. Hunter, B. Rietica, A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns, Lucas Heights Research Laboratories, (1998) 1-27.

Google Scholar