[1]
D.M. Gómez, J.M. Gatica, J.C. Hernández-Garrido, G.A. Cifredo, M. Montes, O. Sanz, J.M. Rebled, H. Vidal, A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation, Appl. Catal. B-Environ., 144 (2014).
DOI: 10.1016/j.apcatb.2013.07.045
Google Scholar
[2]
T. Ebadzadeh, Thermal shock resistance of mullite–cordierite refractories, Br. Ceram. Trans., 102 (2003) 66-68.
DOI: 10.1179/096797803225001542
Google Scholar
[3]
M. Camerucci, G. Urretavizcaya, M. Castro, A. Cavalieri, Electrical properties and thermal expansion of cordierite and cordierite-mullite materials, J. Eur. Ceram. Soc., 21 (2001) 2917-2923.
DOI: 10.1016/s0955-2219(01)00219-9
Google Scholar
[4]
B. Winkler, M.T. Dove, M. Leslie, Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals, Am. Mineral., 76 (1991) 313-331.
Google Scholar
[5]
J.H. Wallace, H. Wenk, Structure variation in low cordierites, Am. Mineral., 65 (1980) 96.
Google Scholar
[6]
J.P. Cohen, F. Ross, G. Gibbs, An X-ray and neutron diffraction study of hydrous low cordierite, Am. Mineral., 62 (1977) 67-78.
Google Scholar
[7]
J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin, J. Alloys Compd., 482 (2009) 429-436.
DOI: 10.1016/j.jallcom.2009.04.044
Google Scholar
[8]
K.B. Schwartz, D.B. Leong, R.L. McConville, Structural chemistry of synthetic cordierite: evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites, Phys. Chem. Miner., 20 (1994) 563-574.
DOI: 10.1007/bf00211852
Google Scholar
[9]
P. Predecki, J. Haas, J. Faber, R.L. Hitterman, Structural aspects of the lattice thermal expansion of hexagonal cordierite, J. Am. Ceram. Soc., 70 (1987) 175-182.
DOI: 10.1111/j.1151-2916.1987.tb04954.x
Google Scholar
[10]
B. Morosin, Structure and thermal expansion of beryl, Acta Cryst. B, 28 (1972) 1899-(1903).
Google Scholar
[11]
H. Schulz, Thermal expansion of beta eucryptite, J. Am. Ceram. Soc., 57 (1974) 313-318.
Google Scholar
[12]
D. Woodcock, P. Lightfoot, Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M= Li, Na, K), J. Mater. Chem., 9 (1999) 2907-2911.
DOI: 10.1039/a904193a
Google Scholar
[13]
C. Stadord, High-temperature crystal chemistry of hydrous Mg-and Fe-cordierites, Am. Mineral., 64 (1979) 337-351.
Google Scholar
[14]
D. Evans, G. Fischer, J. Geiger, F. Martin, Thermal expansions and chemical modifications of cordierite, J. Am. Ceram. Soc., 63 (1980) 629-634.
DOI: 10.1111/j.1151-2916.1980.tb09850.x
Google Scholar
[15]
H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe, S. Udagawa, Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions, J. Am. Ceram. Soc., 69 (1986) 492-498.
DOI: 10.1111/j.1151-2916.1986.tb07451.x
Google Scholar
[16]
J. Zhang, J. Yu, X. Cheng, S. Hou, Thermal expansion and solubility limits of cerium-doped lanthanum zirconates, J. Alloys Compd., 525 (2012) 78-81.
DOI: 10.1016/j.jallcom.2012.02.077
Google Scholar
[17]
H. Wu, X. Lei, J. Zhang, J. Yu, S. Zhang, Lattice Thermal Expansion of the Solid Solutions (La1-xSmx)2Ce2O7, Mater. Res. Bull., 57 (2014) 320-324.
DOI: 10.1016/j.materresbull.2014.06.016
Google Scholar
[18]
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2 (1969) 65-71.
Google Scholar
[19]
E. Meagher, G. Gibbs, The polymorphism of cordierite; II, the crystal structure of indialite, The Canadian Mineralogist, 15 (1977) 43-49.
Google Scholar
[20]
C. Howard, B. Hunter, B. Rietica, A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns, Lucas Heights Research Laboratories, (1998) 1-27.
Google Scholar