Effect of Ti Content on Microwave Absorbing Properties of Nd-Fe Alloys

Article Preview

Abstract:

The Nd7.69Fe92.31-xTix (x = 0, 4, 8, 12) alloy were prepared by arc smelting and high energy ball milling method. The morphology and phase structure of the powders were analyzed by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) and the effect of the Ti content on microwave absorbing properties of the powders were measured by a vector network analyzer (VNA). The results reveal that the samples mainly consisted of Nd2Fe17 and α-Fe crystal structure. The minimum absorption peak frequency shifts to lower frequency region firstly and then shifts to higher frequency region with the increasing amount of Ti content. The minimum reflection loss of Nd7.69Fe84.31Ti8 powder is-31.35 dB and the bandwidth of R < -5 dB reach 3.6 GHz when the coating thickness is 2.0 mm. With the increasing of the coating thickness, the minimum reflectivity peak value of the Nd7.69Fe84.31Ti8 moves to lower frequency region and the minimum reflection loss increase firstly and then decrease. And the minimum reflection value of Nd7.69Fe84.31Ti8 alloy can reach to-38.74 dB (microwave absorption rate 99.99%) at 5.68 GHz, and the bandwidth of R < -10 dB reach 1.12 GHz with the best matching thickness of 2.2 mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-123

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Liu, J.M. Liu, X.L. Long, Y.P. Duan. Electromagnetic wave shielding and absorbing materials. M. Chemical industry press. (2013)49-60.

Google Scholar

[2] J.H. Liu, T.Y. Ma, H. Tong. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites. J. Magn. Magn. Mater. 322 (2010) 940-944.

DOI: 10.1016/j.jmmm.2009.11.028

Google Scholar

[3] S.G. Zhang, H.G. Zhu, J.J. Tian. Electromagnetic and microwave absorbing properties of FeCoB powder. Rare Met. 32 (2013) 402-407.

DOI: 10.1007/s12598-013-0115-0

Google Scholar

[4] M.S. Kim, E.H. Min, J.G. Koh. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. J. Magn. Magn. Mater. 321 (2009) 581-585.

DOI: 10.1016/j.jmmm.2008.09.033

Google Scholar

[5] X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95 (2009) 163108.

DOI: 10.1063/1.3250170

Google Scholar

[6] T.D. Zhou, D.F. Liang, L.J. Deng, D.C. Luan. Electron structure and microwave absorbing ability of flaky FeSiAl powders. J. Mater. Sci. Technol. 27 (2011) 170.

DOI: 10.1016/s1005-0302(11)60044-3

Google Scholar

[7] K.S. Lee, Y.C. Yun, I.B. Jeong, S.S. Kim. Microwave absorbing properties of flaky Fe-Si-Al alloy powder -rubber composites. J. Materials Science Forum. (2007) 1465-1468.

Google Scholar

[8] H. Tian, H.T. Liu, H.F. Cheng, A high-temperature radar absorbing structure: design, fabrication, and characterization. Compos. Sci. Technol. 90 (2014) 202–208.

DOI: 10.1016/j.compscitech.2013.11.013

Google Scholar

[9] X. Wang, R.Z. Gong, H. Luo, Z.K. Feng. Microwave properties of surface modified Fe-Co-Zr alloy flakes with mechanochemically synthesized polystyrene. J. Alloy. Compd. 480 (2009) 761–764.

DOI: 10.1016/j.jallcom.2009.02.037

Google Scholar

[10] Y.K. Sun. Metallic Soft Magnetic Materials and Its Application. M. Metallurgical Industry Press Chin. 24 (1986) 6-59.

Google Scholar

[11] J.L. Xiong, S.K. Pan, L.C. Cheng, Q.R. Rao, G.H. Rao, G.S. Xie. Effects of Ti doping on structure and microwave absorption properties of Pr2Fe17 alloy. J. J. Mater. Sci: Mater. Electron. 26 (2015) 7020-7025.

DOI: 10.1007/s10854-015-3322-7

Google Scholar

[12] K. Yanagimoto, K. Majima, S. Sunada. Effect of powder compositions on GHz microwave absorption of EM absorbing sheets. J. Jpn. Soc. Powder Metall. 51 (2004) 293-296.

DOI: 10.2497/jjspm.51.293

Google Scholar

[13] W.Q. Zhang, S.W. Bie, H.C. Chen, Y. Lu, J.J. Jiang. Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite. J. Magn. Magn. Mater. (2014) 1-4.

Google Scholar

[14] S.B. Liao. Ferromagnetic (PartII). M. Science Press Beijing. (1988) 3-88.

Google Scholar

[15] S.B. Liao, G.J. Yin. The absorption and reflection of absorbing material on electromagnetic wave [J]. Aerospace Materials and Technology, 2 (1992) 16–20.

Google Scholar

[16] I. Kong, S.H. Ahmad, M.H. Abdullah, D. Hui, A.N. Yusoff, D. Puryanti. Microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 322 (2010) 3401-3409.

DOI: 10.1016/j.jmmm.2010.06.036

Google Scholar

[17] H.B. Yi. Microwave absorbing properties planar rare earth intermetallic compounds powders/paraffin composites. D. Lanzhou University. (2009) 40-46.

Google Scholar