Corrosion Inhibition on Mild Steel Using PFOA Additives

Article Preview

Abstract:

In this paper, the anticorrosive properties of perfluorooctanoic acid (PFOA) on Q235 mild steel corrosion were estimated in simulated seawater. XRD and EDS results showed that PFOA could penetrate the rust layer and adsorb on the surface of steel and destroy rust layer. Our polarization measurements revealed that PFOA is a useful inhibitor, with a more pronounced anode effect, while impedance results also indicated successful adsorption of the PFOA species on the steel surface. Laser confocal scanning microscope studies give the evidence that corrosion resistance of the treated samples improved compared to the untreated samples. Molecular simulation technique was used to confirm the ability of PFOA to decrease corrosion. The 150 g/L concentration of PFOA showed the most significant improvement in the anticorrosive property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-66

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. H. Lu, E. e. L. Salabas, and F. Schüth, Ang Chem Interl Edi. Vol. 46(8) (2007), pp.1222-1244.

Google Scholar

[2] P. C. Okafor and Y. Zheng, Corros. Sci. Vol. 51 (2009), p.850.

Google Scholar

[3] B. Qian, B. Hou, and M. Zheng, Corros. Sci. Vol. 72 (2013), pp.1-9.

Google Scholar

[4] A. Raman, B. Kuban, and A. Razvan, Corros. Sci. Vol. 32 (1991), p.1295.

Google Scholar

[5] A. Collazo, X. Novoa, C. Pérez, and B. Puga, Electrochim Acta. Vol. 55 (2010), p.6156.

Google Scholar

[6] A. Rahim, M. Kassim, E. Rocca, and J. Steinmetz, Corros Eng, Sci Technol. Vol. 46 (2011), pp.425-431.

Google Scholar

[7] H. Ashassi-Sorkhabi, D. Seifzadeh, and M. Hosseini, Corros. Sci. Vol. 50(2008), p.3363.

Google Scholar

[8] M. Morad and A. K. El-Dean, Corros. Sci. Vol. 48 (2006), p.3398.

Google Scholar

[9] S. Shibli and V. Saji, Corros. Sci. Vol. 47 (2005), p.2213.

Google Scholar

[10] H. C. Cui, D. C. Li, and J. L. Li: Adv Mater Res. Vol. Trans Tech Publ (2011). pp.82-86.

Google Scholar

[11] C. -c. Li, X. -y. Guo, S. Shen, P. Song, T. Xu, Y. Wen, and H. -F. Yang, Corros. Sci. Vol. 832014, p.147.

Google Scholar

[12] S. Shen, J. Du, X. -y. Guo, Y. Wen, and H. -F. Yang, Appl Surf Sci, Vol. 327(2015), pp.116-121.

Google Scholar

[13] M. A. Chidiebere, E. E. Oguzie, L. Liu, Y. Li, and F. Wang, Ind. Eng. Chem. Res. Vol. 53 (2014), pp.7670-7679.

Google Scholar

[14] P. Zareitalabad, J. Siemens, M. Hamer, and W. Amelung, Chemosphere. Vol. 91(2013). pp.725-732.

Google Scholar

[15] K. E. Holmström, U. Järnberg, and A. Bignert, Envir sci technol, Vol. 39(2005), p.80.

Google Scholar

[16] E. Oguzie, C. Enenebeaku, C. Akalezi, S. Okoro, A. Ayuk, and E. Ejike, J. Am. Chem. Soc. Vol. 349 (2010), p.283.

DOI: 10.1016/j.jcis.2010.05.027

Google Scholar

[17] J. Hu, S. Cao, L. Yin, Q. Liang, and J. Xie, Anti-Corros. Methods Mater, Vol. 59(2012), p.305.

Google Scholar

[18] J. -Y. HU, S. -A. CAO, and J. -L. XIE, Acta Phy-Chim Sin. Vol. 28(2012), p.1153.

Google Scholar

[19] M. A. Chidiebere, C. E. Ogukwe, K. L. Oguzie, C. N. Eneh, and E. E. Oguzie, Ind. Eng. Chem. Res. Vol. 51 (2012), p.668.

DOI: 10.1021/ie201941f

Google Scholar

[20] H. Sun, P. Ren, and J. Fried, Acta Phys. Chim. Sin, Vol. 8(1998), pp.229-246.

Google Scholar