The Influences of Frequency on the Fabrication and Structural Studies of Micro-Arc Oxidization Ceramic Films Formed on Pure Titanium

Article Preview

Abstract:

The porous oxide TiO2 ceramic film containing Ca and P is fabricated on the surface of pure titanium in the electrolyte of C4H6CaO4-NaH2PO4 by micro-arc oxidation (MAO) method. The microscopic structure, elemental composition and phase components of Ceramic Film are studied with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), 3D profilometer and etc. Results indicate that the ceramic film on pure titanium by micro-arc oxidation is a porous mixed crystal structure which contains anatase TiO2 and rutile TiO2, and that the film is mainly composed of such elements as Ti, O, Ca and P. With frequency increasing, the number of micropores increases, the hole is decreased in diameter, porosity and roughness,and the surface is more smooth. The increase of frequencies makes the ratio of Ca/P decrease, the relative content of anatase TiO2 increase and rutile TiO2 decrease.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

977-984

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.P. Zhu, J.W. Zhu and H.L. Qu: Rare Metal Materials and Engineering, Vol. 41 (2012) No. 11, p.2058. (In Chinese).

Google Scholar

[2] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia: Progress in Materials Science, Vol. 54 (2009) No. 3, p.397.

Google Scholar

[3] D. Zaffe, C. Bertoldi and U. Consolo: Biomaterials, Vol. 24 (2003) No. 6, p.1093.

Google Scholar

[4] R. Banerjee, P.C. Collins, A. Genc and H.L. Fraser: Materials Science and Engineering: A, Vol. 358 (2003) No. 1-2, p.343.

Google Scholar

[5] T. Fu, X.M. Wu, F. Wu, M. Luo, B.H. Dong and Y. Ji. Transactions of Nonferrous Metals Society of China, Vol. 22 (2012) No. 7, p.1661.

DOI: 10.1016/s1003-6326(11)61370-8

Google Scholar

[6] X.B. Zheng, M.H. Huang and C.X. Ding: Biomaterials, Vol. 21 (2000) No. 8, p.841.

Google Scholar

[7] T.M. Lee, C.Y. Yang, E. Chang and R.S. Tsai: Biomedical Materials Research Part A, Vol. 71A (2004) No. 4, p.652.

Google Scholar

[8] Y. Vangolu, E. Arslan, Y. Totik, E. Demirci, A. Alsaran: Surface and Films Technology, Vol. 205 (2010) No. 6, p.1764.

DOI: 10.1016/j.surfcoat.2010.08.042

Google Scholar

[9] J.X. Li, Y.M. Zhang, Y. Han and Y.M. Zhao: Surface and Films Technology, Vol. 204 (2010) No. 8, p.1252.

Google Scholar

[10] S. Yu, Z.T. Yu, G. Wang, J.Y. Han, X.Q. Ma and M.S. Dargusch: Transactions of Nonferrous Metals Society of China, Vol. 21 (2011) No. 3, p.573.

Google Scholar

[11] C.M. Han, H.E. Kim, Y.S. Kim and S.K. Han: Biomedical Materials Research Part B: Applied Biomaterials, Vol. 90B (2009) No. 1, p.165.

Google Scholar

[12] S. Yu, Z.T. Yu, G. Wang, J.Y. Han, X.Q. Ma and M.S. Dargusch: Colloids and Surfaces B: Biointerfaces, Vol. 85 (2011) No. 2, p.103.

Google Scholar

[13] Y.J. Wang, L. Wang, H.D. Zheng, C. Du, C. Y. Ning, Z.F. Shi and C.X. Xu: Applied Surface Science, Vol. 256 (2010) No. 7, p. (2018).

Google Scholar

[14] J.X. Li, Y.M. Zhang and Y. Han: Practical Stomatology, Vol. 23 (2007) No. 1, p.106. (In Chinese).

Google Scholar

[15] K. Venkateswarlu, S. Suresh, N. Rameshbabu, D. Sreekanth and M. Sandhyarani: Materials Science Forum, Vol. 765 (2013) No. 7, p.688.

DOI: 10.4028/www.scientific.net/msf.765.688

Google Scholar

[16] Q.J. Li, H.H. Wu, J.B. Wang, G.R. Gu and Z.S. Jin: Inorganic Materials, Vol. 21 (2006) No. 2, p.488. (In Chinese).

Google Scholar

[17] Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei and B.L. Jiang: Materials Chemistry and Physics, Vol. 90 (2005) No. 1, p.128.

Google Scholar

[18] Y. Li, I.S. Lee, F.Z. Cui and S.H. Choi: Biomaterials, Vol. 29 (2008) No. 13, p. (2025).

Google Scholar

[19] R.A. Spurr and H. Myers: Analytical Chemistry, Vol. 29 (1957) No. 5, p.760.

Google Scholar

[20] J. Brinkmann, T. Hefti, F. Schlottig, N.D. Spencer and H. Hall: Biointerphases, Vol. 7 (2012) No. 1, p.34.

Google Scholar