Microstructures and Magnetic Properties of CoPt-C Nanogranular Films

Article Preview

Abstract:

CoPt-C films were fabricated on silicon substrate by dc reactive magnetron sputtering followed by vacuum annealing. The effects of C additions and annealing temperature on the microstructure and magnetic properties were investigated. The as-deposited films had flat, compact surfaces and face-centered cubic structure, which transforms into the face-centered tetragonal structure after thermal annealing at 700°C for 1 hour. The grain size of CoPt increased with the annealing temperature but decreased with increasing C content. No carbide appearing, the C content exists in amorphous state in the nanocomposite films, and it is homogeneous distributed between the CoPt nanograins, which have the benefit to restrain grain growth and obtain isolated CoPt particles with uniform size. The fct-CoPt films annealed at 700°C exhibited high in-plane coercivity, up to 4200 Oe at room temperature and better square degrees. In the CoPt-C granular films, the best doping amount is about 35 at.% C. These CoPt-C films with novel embedded structure and moderate coercivity have shown promise for high density magnetic recording medium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

985-990

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Weller, A. Moser, L. Folks, M.E. Best, W. Lee, M.F. Toney, M. Schwickert, J.U. Thiele and M.F. Doerner: IEEE Trans. Magn., Vol. 36 (2000), p.10.

DOI: 10.1109/20.824418

Google Scholar

[2] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon and K. Fukamichi: Appl. Phys. Lett., Vol. 78 (2001), p.1104.

Google Scholar

[3] N.I. Vlasova, G.S. Kandaurova and N.N. Shchegoleva: J. Magn. Magn. Mater., Vol. 222 (2000) No. 1-2, p.138.

Google Scholar

[4] Y.X. Wang, X.L. Zhang, Y. Liu, S.Q. Lv, Y.H. Jiang, Y.J. Zhang, H.L. Liu, Y.Q. Liu and J.H. Yang: J. Alloys. Comp., Vol. 582 (2014), p.511.

Google Scholar

[5] H.Y. An, Q. Xie, J. Wang, T. Sannomiya, S. Muraishi, Z.J. Zhang, Y. Nakamura and J. Shi: J. Vac. Sci. Technol. A, Vol. 33(2015) No. 2, p.021512.

Google Scholar

[6] K.K. Tham, S. Hinata, S. Saito and M. Takahashi: IEEE Trans. Magn., Vol. 50(2014) No. 11, p.3203204.

Google Scholar

[7] K.K. Tham, S. Hinata, S. Saito and M. Takahashi: J. Appl. Phys., Vol. 115 (2014), p. 17B752.

Google Scholar

[8] L. Ma, Z.W. Liu, H.Y. Yu, X.C. Zhong, Y.P. Zeng, D.C. Zeng and X.P. Zhong: IEEE Trans. Magn., Vol. 47 (2011) No. 10, p.3505.

Google Scholar

[9] L. Ma, L. Zhou, T. Liu, S.Q. Zhao, L. Li, X.F. Wu, Y.L. Zhang and G. Cheng: J. Mater. Sci: Mater. Electron, Vol. 27 (2016), p.7420.

Google Scholar

[10] Y. Khemjeen, S. Pinitsoontorn, A. Chompoosor and S. Maensiri: J Appl. Phys., Vol. 116 (2014) No. 5, p.053910.

Google Scholar

[11] J.J. Host, J.A. Block, K. Parvin, V.P. Dravid, J.L. Alpers, T. Sezen and R. Laduca: J Appl. Phys., Vol. 83 (1998) No. 2, p.793.

Google Scholar

[12] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra and S. Subramoney: Science, Vol. 259 (1993), p.346.

Google Scholar

[13] J. Jiao and S. Seraphin: J. Appl. Phys., Vol. 83 (1998), p.2442.

Google Scholar

[14] H. Han, F. Ryan and M. McClure: Surf. Coat. Tech., Vol. 120-121(1999), p.579.

Google Scholar

[15] L. Ma, M. F. He, Z.W. Liu, D.C. Zeng, Z.F. Gu, G. Cheng: Thin Solid Films, Vol. 556 (2014), p.460.

Google Scholar

[16] L. Ma, Z.W. Liu, D.C. Zeng, H.Y. Yu, X.P. Zhong and X.Z. Zhang: Sci. China: Phys. Mech., Vol. 55 (2012) No. 9, p.1594.

Google Scholar

[17] L. Ma, Z.W. Liu, D.C. Zeng, X.P. Zhong and X.Z. Zhang: Sci. China: Phys. Mech., Vol. 54 (2011) No. 7, p.1218.

Google Scholar

[18] B.E. Warren: X-Ray Diffraction (New York: Dover, 1990), p.208.

Google Scholar