[1]
B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, vol. 414, pp.345-352, (2001).
DOI: 10.1038/35104620
Google Scholar
[2]
S. C. Singhal, K. Kendall, High temperature solid oxide fuel cells: Fundamentals, design and applications, Elsevier, Oxford, UK, (2007).
Google Scholar
[3]
W.J. Quadakkers, H. Greiner, M. Ha¨nsel, A. Pattanaik, A.S. Khanna, W. Malle´ner, Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs, Solid State Ionics 91 (1996) 55-67.
DOI: 10.1016/s0167-2738(96)00425-0
Google Scholar
[4]
S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys, Journal of Power Sources, vol. 171, pp.652-662, (2007).
DOI: 10.1016/j.jpowsour.2007.06.255
Google Scholar
[5]
W. N. Liu, X. Sun, and M. A. Khaleel, Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks, Fuel Cells, vol. 10, pp.703-717, (2010).
DOI: 10.1002/fuce.200900075
Google Scholar
[6]
J. W. Fergus, Metallic interconnects for solid oxide fuel cells, Mat. Sci. and Eng. A, vol. 397, pp.271-283, (2005).
Google Scholar
[7]
W. Qu, L. Jian, J.M. Hill, D.G. Ivey, Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects, Journal of Power Sources 153 (2006) 114–124.
DOI: 10.1016/j.jpowsour.2005.03.137
Google Scholar
[8]
P. Wei, X. Deng, M.R. Bateni, A. Petric, Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells, Corrosion 63 (2007) 529–536.
DOI: 10.5006/1.3278404
Google Scholar
[9]
J. Wu, Y. Jiang, C. Johnson, X. Liu, DC electrodeposition of Mn–Co alloys on stainless steels for SOFC interconnect application, Journal of Power Sources 177 (2008) 376–385.
DOI: 10.1016/j.jpowsour.2007.11.075
Google Scholar
[10]
K. Chen, G.D. Wilcox, Tin-manganese alloy electrodeposits I. Electrodeposition and microstructural characterization, J. Electrochem. Soc. 153 (2006) C634–C640.
DOI: 10.1149/1.2216548
Google Scholar
[11]
M.R. Ardigoa, I. Popaa, S. Chevaliera, P. Girardonb, F. Perryc, R. Laucournetd, A. Brevetd, C. Desgrangese, Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2/H2O atmosphere, Int. J. Hydrog. Energy, Vol. 39, 36, (2014).
DOI: 10.1016/j.ijhydene.2014.07.058
Google Scholar
[12]
N. Shaigan, W. Qu, D. G. Ivey, W. Chen, A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects, Journal of Power Sources 195 (2010) 1529–1542.
DOI: 10.1016/j.jpowsour.2009.09.069
Google Scholar
[13]
K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res. Inter. (2012) 991-994.
Google Scholar
[14]
S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels, Oxidation of Metals. 80 (2013) 61-72.
DOI: 10.1007/s11085-013-9370-6
Google Scholar
[15]
T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res. Inter. (2012) 987-990.
DOI: 10.1108/acmm-07-2018-1974
Google Scholar
[16]
T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels, Oxidation of Metals 79 (2013) 325-335.
DOI: 10.1007/s11085-012-9356-9
Google Scholar
[17]
S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03wt. % Si in Ar–20%H2O at 900°C, Corrosion Science, 87 (2014) 101-110.
DOI: 10.1016/j.corsci.2014.06.018
Google Scholar
[18]
P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere, Oxidation of Metals 81 (2014) 315-329.
DOI: 10.1007/s11085-013-9432-9
Google Scholar
[19]
W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-Ambhorn, S. Chandra-Ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High Temp. 32 (20158), 22-27.
DOI: 10.1179/0960340914z.00000000057
Google Scholar
[20]
W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corrosion Science, 106 (2016).
DOI: 10.1016/j.corsci.2016.02.002
Google Scholar