Fabrication of (MnxCo1-x)3O4 Coated Stainless Steel AISI 430 by Electrodeposition with AC+DC Signals

Article Preview

Abstract:

A ferritic stainless steel (FSS) AISI 430 coated by (MnxCo1-x)3O4 spinel has been intensively studied for its potential in application as an interconnect of a solid oxide fuel cell (SOFC). In this study, in order to develop fabrication of (MnxCo1-x)3O4 coatings, Mn-Co coatings on AISI 430 by an electrodeposition technique was adopted. The electric direct current (DC) and alternative current (AC) modulated DC (AC+DC) signals were utilized to drive voltage levels for electrodeposition. By varying the duty of the AC+DC signals from 25 % to 50 %, the ratio of Mn and Co composition in the coating changed, consequently by this technique it is possible to adjust the composition of binary alloy coating. The fabricated coatings also exhibited different morphologies indicating nucleation and grain growth process of various oxide scales of Mn-Co. The oxidation behavior is also investigated to evaluate the quality of the coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, vol. 414, pp.345-352, (2001).

DOI: 10.1038/35104620

Google Scholar

[2] S. C. Singhal, K. Kendall, High temperature solid oxide fuel cells: Fundamentals, design and applications, Elsevier, Oxford, UK, (2007).

Google Scholar

[3] W.J. Quadakkers, H. Greiner, M. Ha¨nsel, A. Pattanaik, A.S. Khanna, W. Malle´ner, Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs, Solid State Ionics 91 (1996) 55-67.

DOI: 10.1016/s0167-2738(96)00425-0

Google Scholar

[4] S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys, Journal of Power Sources, vol. 171, pp.652-662, (2007).

DOI: 10.1016/j.jpowsour.2007.06.255

Google Scholar

[5] W. N. Liu, X. Sun, and M. A. Khaleel, Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks, Fuel Cells, vol. 10, pp.703-717, (2010).

DOI: 10.1002/fuce.200900075

Google Scholar

[6] J. W. Fergus, Metallic interconnects for solid oxide fuel cells, Mat. Sci. and Eng. A, vol. 397, pp.271-283, (2005).

Google Scholar

[7] W. Qu, L. Jian, J.M. Hill, D.G. Ivey, Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects, Journal of Power Sources 153 (2006) 114–124.

DOI: 10.1016/j.jpowsour.2005.03.137

Google Scholar

[8] P. Wei, X. Deng, M.R. Bateni, A. Petric, Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells, Corrosion 63 (2007) 529–536.

DOI: 10.5006/1.3278404

Google Scholar

[9] J. Wu, Y. Jiang, C. Johnson, X. Liu, DC electrodeposition of Mn–Co alloys on stainless steels for SOFC interconnect application, Journal of Power Sources 177 (2008) 376–385.

DOI: 10.1016/j.jpowsour.2007.11.075

Google Scholar

[10] K. Chen, G.D. Wilcox, Tin-manganese alloy electrodeposits I. Electrodeposition and microstructural characterization, J. Electrochem. Soc. 153 (2006) C634–C640.

DOI: 10.1149/1.2216548

Google Scholar

[11] M.R. Ardigoa, I. Popaa, S. Chevaliera, P. Girardonb, F. Perryc, R. Laucournetd, A. Brevetd, C. Desgrangese, Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2/H2O atmosphere, Int. J. Hydrog. Energy, Vol. 39, 36, (2014).

DOI: 10.1016/j.ijhydene.2014.07.058

Google Scholar

[12] N. Shaigan, W. Qu, D. G. Ivey, W. Chen, A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects, Journal of Power Sources 195 (2010) 1529–1542.

DOI: 10.1016/j.jpowsour.2009.09.069

Google Scholar

[13] K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res. Inter. (2012) 991-994.

Google Scholar

[14] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels, Oxidation of Metals. 80 (2013) 61-72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[15] T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res. Inter. (2012) 987-990.

DOI: 10.1108/acmm-07-2018-1974

Google Scholar

[16] T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels, Oxidation of Metals 79 (2013) 325-335.

DOI: 10.1007/s11085-012-9356-9

Google Scholar

[17] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03wt. % Si in Ar–20%H2O at 900°C, Corrosion Science, 87 (2014) 101-110.

DOI: 10.1016/j.corsci.2014.06.018

Google Scholar

[18] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere, Oxidation of Metals 81 (2014) 315-329.

DOI: 10.1007/s11085-013-9432-9

Google Scholar

[19] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-Ambhorn, S. Chandra-Ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High Temp. 32 (20158), 22-27.

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[20] W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corrosion Science, 106 (2016).

DOI: 10.1016/j.corsci.2016.02.002

Google Scholar