Surface Modification of Sisal Fibres by Ultrasonic Field

Article Preview

Abstract:

This article demonstrates the surface modification of sisal fibres by using NaOH in an ultrasonic medium. The fibres were soaked in 1.0 M NaOH, 60°C for 30, 60, and 90 min, respectively. The fibre surface was examined with a digital microscope camera and a scanning electron microscope (SEM). An elasticity test was used to examine the mechanical properties of composites, specifically between sisal and LLDPE. The results demonstrated the modification of the sisal fibres in NaOH solution by ultrasound producing a cleaner and smoother fibre surface. This was affected by a cavitation phenomenon, which produced high-speed impact jets that cleaned off the dirty particles from the fibre surface. The modified mixed materials had higher ultimate tensile strength. By using this method, the result of sisal fibre modification decreased in the diameter strand of the experimented fibres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-288

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Espert, F. Vilaplana, S. Karlsson, Comparison of water absorption in natural cellulosic fibres from wood one year crops in polypropylene composites and its influence on their mechanical properties, Compos Part A – Appl Sci Manuf. 35 (2004).

DOI: 10.1016/j.compositesa.2004.04.004

Google Scholar

[2] R. Chandra R., R. Rustgi, Biodegradable Polymers, Progress in Polymer Science 23 (1998) 1273-1335.

Google Scholar

[3] C. Girisha, Sanjeevamurthy, Gunti Rangasrinivas, Effect of alkali treatment, fiber loading and hybridization on tensile properties of sisal fiber, banana empty fruit bunch fiber and bamboo fiber reinforced thermoset composites, International Journal of Engineering & Advanced Technology 2 (2012).

Google Scholar

[4] R. Malkapuram, V. Kumar, S.N. Yuvraj, Recent Development in Natural Fibre Reinforced Polypropylene Composites, Journal of Reinforced Plastics and Composites 28 (2008) 1169-1189.

DOI: 10.1177/0731684407087759

Google Scholar

[5] P. Wambua, J. Ivens, I. Verpoest, Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics, Compos Sci Technol 63 (2003) 1259-1264.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[6] M. Wollerdorfer, H. Bader, Influence of natural fibre on the mechanical properties of biodegradable polymer, Industrial crops and products 8 (1998) 105-112.

DOI: 10.1016/s0926-6690(97)10015-2

Google Scholar

[7] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review, J. Polym. Environ. 15 (2007) 25-33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[8] L. Y. Mwaikambo, N. Tucker, A.J. Clark, Mechanical properties of hemp fibre reinforced euphorbia composites, Macromol Mater Eng 292 (2007) 993-1000.

DOI: 10.1002/mame.200700092

Google Scholar

[9] D. Ray, B.K. Sarkar, A. K. Rana, N. R. Bose, Effect of alkali treated jute fibres on composite properties, Bull. Mater. Sci. 24 (2001) 129-135.

DOI: 10.1007/bf02710089

Google Scholar

[10] Valcineide O.A. Tanobe, Thais H.S. Flores-Sahagun, Sandro C. Amico, Graciela I.B. Muniz, K.G. Satyanarayana, Sponge Gourd (Luffa Cylindrica) Reinforced Polyester Composites: Preparation and Properties, Defence Science Journal 64 (2014) 273-280.

DOI: 10.14429/dsj.64.7327

Google Scholar

[11] U. Z. Haydar, B. MDH, Preparation, structure, and properties of the coir fiber/polypropylene composites, J Compos Mater 48 (2014) 3293-3301.

Google Scholar

[12] H. M. Mustafa, D. Benjamin, Unsaturated Polyester Resin Reinforced With Chemically Modified Natural Fibre, IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) 1 (2014) 31-38.

Google Scholar

[13] S. Ouajai, R. A. Shanks, Composition, structure and thermal degradation of hemp cellulose after chemical treatment, Polym. Degrad. Stab. 89 (2005) 327-335.

DOI: 10.1016/j.polymdegradstab.2005.01.016

Google Scholar

[14] V. P. Cyras, C. Vallo, J. M. Kenny, A. Vazquez, Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre, J. Compos. Mater. 38 (2004) 1387-1399.

DOI: 10.1177/0021998304042738

Google Scholar

[15] S. V. Prasad, C. Pavithran, P. K. Rohatgi, Alkali treatment of coir fibres for coir– polyester composites, J. Mater. Sci. 18 (1983) 1443-1454.

DOI: 10.1007/bf01111964

Google Scholar

[16] M. M. Kabir, H. Wang, K. T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos: Part B 43 (2012) 2883-2892.

DOI: 10.1016/j.compositesb.2012.04.053

Google Scholar

[17] S. Fakirov, D. Bhattacharyya, Handbook of Engineering biopolymers: Homopolymers, Blends and Composites, Munich Hanser Publishers, (2007).

DOI: 10.3139/9783446442504.fm

Google Scholar

[18] K. S. Suslick, L. A. Crum, Sonochemistry and Sonoluminescence, in Handbook of Acoustics, M. J. Crocker (Eds. ), Wiley-Interscience: New York, 1998, pp.243-253.

Google Scholar

[19] M. J. John, R. D. Anandjiwala, Recent developments in chemical modification and characterization of natural fibre-reinforced composites, Polym. Compos. 29 (2008) 187-207.

DOI: 10.1002/pc.20461

Google Scholar

[20] P. V. Joseph, K. Joseph, S. Thomas, C. K. S. Pillai, S. V. Prasad, G. Groeninckx, S. Mariana, The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites, Compos Part A – Appl Sci Manuf. 34 (2003) 253-266.

DOI: 10.1016/s1359-835x(02)00185-9

Google Scholar