[1]
Wang, X., Gao, S., Wang, X. Z., and Bai, Y., Green synthesis of SUZ-4 zeolite controllable in morphology and SiO2/Al2O3 ratio, Microporous and Meseporous Materials. 174 (2013) 108-116.
DOI: 10.1016/j.micromeso.2013.03.003
Google Scholar
[2]
Barri, S.A., US patent. 5 (1992) 118-483.
Google Scholar
[3]
Lawton S.L., Bennett J.M., Schlenker J.L., and Rubin M.K., Oil & Gas J. (31 March 1998) 21, J. Chem. Soc., Chem. Commun. 894.
Google Scholar
[4]
Kevan, L., Choo, H., and Hong, S.B., Comparative ESR and Catalytic Studies of Ethylene Dimerization on Pd(II)-Exchanged Clinoptilolite, Mordenite, Ferrierite, and SUZ-4, J. Phys. Chem. B. 105 (2001) 7730-7738.
DOI: 10.1021/jp0108420
Google Scholar
[5]
Mooiweer, H.H., de Jong, K.P., Kraushaar-Czarnetzki, B., Stork, W.H.J. and Krutzen, B.C.H., Skeletal isomerization of olefins with zeolite ferririte as a catalyst, In zeolites and Related Microporous Materials: State of the Art. 84 (1994).
DOI: 10.1016/s0167-2991(08)63797-0
Google Scholar
[6]
Asensi, M. A., Camblor, M. A., and Martinez, A., Zeolite SUZ-4: reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butanes, Microporous and Mesoporous Materials. 28 (1999) 427-436.
DOI: 10.1016/s1387-1811(98)00314-x
Google Scholar
[7]
Subbiah, A., Chob, K. B., Blint, R. J., Gujar, A., Price, G. L., and Yiec, J. E., NOx reduction over metal-ion exchange novel zeolite under lean conditions activity and hydrothermal stability, Applied Catalysis B: Environmental. 42 (2003) 155-178.
DOI: 10.1016/s0926-3373(02)00230-8
Google Scholar
[8]
Jiang, S., Hwang, Y. K., Jhung, S. H., Chang, J. H., Hwang, J. S., Cai, T., and Park, S.E., Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether, Chemistry letters. 33 (2004) 1048-1049.
DOI: 10.1246/cl.2004.1048
Google Scholar
[9]
Worathanakul, P., and Vongvoradit, P., Fast crystallization of SUZ-4 zeolite with hydrothermal synthesis: Part I temperature and time effect, Procedia Engineering. 32 (2012) 198-204.
DOI: 10.1016/j.proeng.2012.01.1257
Google Scholar
[10]
Sinpakumpepab, S. and Ounjarenkul, S., Unpublished data, Chulalongkorn University, Bangkok, Thailand, (1997).
Google Scholar
[11]
Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K. N., Kyritsi, A., and Kasselouri-Rigopoulou, V., Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash, Micropor. Mesopor. Mat. 115 (2008) 189-196.
DOI: 10.1016/j.micromeso.2007.12.032
Google Scholar
[12]
Jaroonvechatam, N., Sansuksom P., Worathanakul P., and Kongkachuichay P., SUZ-4 Zeolite Synthesis Derived from Rice Husk Ash, Chiang Mai J. Sci., 40 (2013) 109-116.
Google Scholar
[13]
Thuadaija, P. and Nuntiya , A., Effect of the SiO2/Al2O3 ratio on the synthesis of Na-x zeolite from Mae Moh fly ash, ScienceAsia., 38 (2012) 295–300.
DOI: 10.2306/scienceasia1513-1874.2012.38.295
Google Scholar
[14]
Panthanit, J., Synthesis SUZ-4 from rice husk ash, [MSc. Thesis], Department of Chemical Engineering, Faculty Engineering, Kasetsart University. Bangkok, Thailand, (2007).
Google Scholar
[15]
Price, G. L., SUZ-4, in: Robson, H. (Editor) and Lillerud, K.P. (XRD patterns), Verified Synthesis of Zeolitic Materials. , Elsevier Science B. V., The Netherlands, 2001, p.265.
Google Scholar
[16]
Pakhomova, A. S., Armbruster, T., Krivovichev, S. V., and Yakovenchuk, V. N., Dehydration of the zeolite merlinoite from the Khibiny massif, Russia: an in situ temperature-dependent single-crystal X-ray study, Eur. J. Mineral. 26 (2014) 371–380.
DOI: 10.1127/0935-1221/2014/0026-2380
Google Scholar