Modeling and Verification of Relaxation Behavior for Magnetorheological Elastomers with Applied Magnetic Field

Article Preview

Abstract:

In this paper, on the basis of the viscoelastic fractional derivative model, Mittag-Leffler function is applied to deduce the expression of stress relaxation modulus for magnetorheological elastomers according to its form and main properties. Furthermore, the relaxation modulus for polyurethane rubber matrix cured magnetorheological elastomers at different applied magnetic fields and shear strains is tested by rheometer. The results indicate that magnetorheological elastomers exhibit obvious relaxation behavior and the magnetic field strength and shear strain exert significant influence on the relaxation behavior: the relaxation modulus of magnetorheological elastomers increases with the magnetic field strength but decreases with the shear strain. Besides, the model agrees well with the experimental data which indicates that the model is suitable for characterization of relaxation behavior for magnetorheological elastomers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

527-532

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Ginder, M. E. Nichols, L. D. Elie, J. L. Tardiff, Magnetorheological elastomers: properties and applications, Proc. SPIE Conf. Smart Mater. Tech. 3675 (1999) 131-138.

DOI: 10.1117/12.352787

Google Scholar

[2] J. D. Carlson, M. R. Jolly, MR fluid, foam and elastomer devices, Mechatron. 10(4-5) (2000) 607-614.

Google Scholar

[3] M. Farshad, A. Benine, Magnetoactive elastomer composites, Polymer Testing, 23 (2004) 347-353.

DOI: 10.1016/s0142-9418(03)00103-x

Google Scholar

[4] X. L. Gong, X. Z. Zhang, P. Q. Zhang, Fabrication and characterization of isotropic magnetorheological elastomers, Polym. Test. 24 (2005) 669-676.

DOI: 10.1016/j.polymertesting.2005.03.015

Google Scholar

[5] A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, C. Evrensel, Development and characterization of magnetorheological elastomers, J. Appl. Polym. Sci. 105(5) (2007) 2497-2508.

DOI: 10.1002/app.24348

Google Scholar

[6] X. Z. Zhang, S. L. Peng, W. J. Wen, W. H. Li, Analysis and fabrication of patterned magnetorheological elastomers, Smart Mater. Struct. 17 (2008) 045001.

DOI: 10.1088/0964-1726/17/4/045001

Google Scholar

[7] A. V. Chertovich, G. V. Stepanov, E. Y. Kramarenko, A. R. Khokhlov, New composite elastomers with giant magnetic response, Macromol. Mater. Eng. 295 (2010) 336-341.

DOI: 10.1002/mame.200900301

Google Scholar

[8] W. Zhang, X. L. Gong, W. Q. Jiang, Y. C. Fan, Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber, Smart Mater. Struct. 19 (2010) 085008.

DOI: 10.1088/0964-1726/19/8/085008

Google Scholar

[9] J. K. Wu, X. L. Gong, Y. C. Fan, H. S. Xia, Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field, Smart Mater. Struct. 19 (2010) 105007.

DOI: 10.1088/0964-1726/19/10/105007

Google Scholar

[10] H. Böse, R. Röder, Magnetorheological elastomers with high variability of their mechanical properties, J. Phys. Conf. Ser. 149 (2009) 012090.

DOI: 10.1088/1742-6596/149/1/012090

Google Scholar

[11] G. Stepanov, D. Borin, S. Odenbach, Magnetorheological effect of magneto-active elastomers containing large particles, J. Phys. Conf. Ser. 149 (2009) 012098.

DOI: 10.1088/1742-6596/149/1/012098

Google Scholar

[12] W. H. Li, X. Z. Zhang, A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers, Smart Mater. Struct. 19 (2010) 035002.

DOI: 10.1088/0964-1726/19/3/035002

Google Scholar

[13] H. J. Song, N. W. Wereley, R. C. Bell, J. L. Planinsek, J. A. Filer II, Field dependent response of magnetorheological elastomers utilizing spherical Fe particles versus Fe nanowires, J. Phys. Conf. Ser. 149 (2009) 012097.

DOI: 10.1088/1742-6596/149/1/012097

Google Scholar

[14] W. Zhang, X. L. Gong, J. F. Li, H. Zhu, W. Q. Jiang, Radiation vulcanization of magnetorheological elastomers based on silicone rubber, Chinese J. Chem. Phys. 22(5) (2009) 535-540.

DOI: 10.1088/1674-0068/22/05/535-540

Google Scholar

[15] D. Leng, L. Sun, J. Sun, Y. Lin, Derivation of stiffness matrix in constitutive modeling of magnetorheological elastomer, J. Phys. Conf. Ser. 412 (2013) 012028.

DOI: 10.1088/1742-6596/412/1/012028

Google Scholar

[16] K. Danas, S. V. Kankanala, N. Triantafyllidis, Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Sol. 60 (2012) 120-138.

DOI: 10.1016/j.jmps.2011.09.006

Google Scholar

[17] W. H. Li, Y. Zhou, T. F. Tian, Viscoelastic properties of MR elastomers under harmonic loading, Rheolog. Aca, 49(7) (2010) 733-740.

DOI: 10.1007/s00397-010-0446-9

Google Scholar

[18] Q. Wang, X. F. Dong, L. Y. Li, Y. Tong, J. P. Ou, Constitutive description for relaxation behavior of magnetorheological elastomer, Acta Mater. Compos. Sin. 30 (2013) 138-141.

Google Scholar

[19] L. Chen, S. A. Jerrams, A rheological model of the dynamic behavior of the magnetorheological elastomers, J. Appl. Phys. 110(1) (2011) 013513.

DOI: 10.1063/1.3603052

Google Scholar

[20] J. T. Zhu, Z. D. Xu, The parameter model of magnetorheological elastomers based on fractional derivative, Eng. Mech. 29(008) (2012) 45-49.

Google Scholar

[21] I. Podlubny, Fractional Differential Equations, New York, USA, Academic Press, (1999).

Google Scholar

[22] F. Guo, C. B. Du, R. P. Li, Viscoelastic Parameter Model of Magnetorheological Elastomers Based on Abel Dashpot, Adv. Mech. Eng. (2014) 629386.

DOI: 10.1155/2014/629386

Google Scholar

[23] Y. Shen, M. F. Golnaraghi, G. R. Heppler, Experimental research and modeling of magnetorheological elastomers, J. Intell. Mater. Syst. Struct. 15 (2004) 27-35.

Google Scholar