Neutronic Analysis of Thorium Nitride (Th, U233)N Fuel for 500MWth Gas Cooled Fast Reactor (GFR) Long Life without Refueling

Article Preview

Abstract:

Neutronic analysis of Thorium Nitride (Th, U233)N fuel of 500MWth Gas Cooled Fast Reactor (GFR) has been done. In this study the neutronic analysis use SRAC2006 code both PIJ and CITATION calculation. The data libraries use JENDL 4.0. First calculation is survey parameter with U-233 enrichment variation. From the homogeneous core configuration calculation, when the enrichment of U-233 is 8.2%, the maximum k-eff value is 1,00819 with excess reactivity value 0,812%. The average power density is 63 Watt/cc and the maximum power density 100 Watt/cc. The heterogeneous core configuration calculation has been done to flattening the power of the reactor. The variation fuel of F1:F2:F3 = 7.8%:8%:8.8%. The fraction of fuel : cladding: coolant = 60%:10%:30%. The max k-eff value of heterogeneous core configuration is 1,01229 with excess reactivity value 1.21%. The average power density is 65 Watt/cc and the maximum power density 92 Watt/cc. The power density distribution of heterogeneous core configuration is flatter than homogeneous core configuration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-50

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IAEA, International Atomic Energy Agency: Thorium Fuel Cycle – Potential Benefits and Challenges (IAEA-TECDOC-1450, 2005).

Google Scholar

[2] GIF and the OECD Nuclear Energy Agency: Technology Roadmap Update for Generation IV Nuclear Energy System (GIF and OECD NEA: 2014).

Google Scholar

[3] Z. Su'ud and H. Sekimoto: Annals of Nuclear Energy Vol. 54 (2013), pp.58-66.

Google Scholar

[4] Fiber Monado, Zaki Su'ud, Abdul Waris, Khairul Basar, Menik Ariani and Hiroshi Sekimoto: Advanced Materials Research Vol. 772 (2013), pp.501-506.

DOI: 10.4028/www.scientific.net/amr.772.501

Google Scholar

[5] Fiber Monado, Menik Ariani, Zaki Su'ud, Abdul Waris, Khairul Basar, Ferhat Aziz, Sidik Permana and Hiroshi Sekimoto: AIP Conference Proceedings 1584, 105 (2014); doi: 10. 1063/1. 4866113.

DOI: 10.1063/1.4866113

Google Scholar

[6] Fiber Monado, Zaki Su'ud, Abdul Waris, Khairul Basar, Menik Ariani, and Hiroshi Sekimoto: AIP Conference Proceedings 1615, 47 (2014); doi: 10. 1063/1. 4895859.

Google Scholar

[7] Iyos Subki, Asril Pramutadi, S.N.M. Rida, Zaki Su'ud, R. Eka Sapta, S. Muh. Nurul, S. Topan, Yuli Astuti and Sedyartomo Soentono: Progress in Nuclear Energy Vol. 50 (2008), pp.152-156.

DOI: 10.1016/j.pnucene.2007.10.029

Google Scholar

[8] Ratna Dewi Syarifah and Zaki Su'ud: AIP Conference Proceedings 1677, 120005 (2015); doi: 10. 1063/1. 4930788.

Google Scholar

[9] J.D. Stemphen et al: Journal of American Nuclear Society (ANS-Nuclear Technology) Vol. 183, (2012), p.13 – 29.

Google Scholar

[10] K. Okumura, SRAC2002: The comprehensive Neutronic Calculation Code System (JAEA, Japan, 2002).

Google Scholar