Research on Microstructures and Mechanical Properties of Fiber Laser Welding of A7N01 Al-Alloy

Article Preview

Abstract:

A7N01 aluminum alloy with the thickness of 10mm is welded using fiber laser with filler wire, the microstructures and mechanical properties of the welding joints are observed and analyzed by microhardness and tensile testers, SEM. The results show that the crystalline morphology of the welding metal is equiaxial as-cast. the columnar crystals exist in the fusion zone next to the weld interface. A softening zone with the width of 1.6 mm is formed in the heat affected zone. Micro-hardness of the welding joint distributes uniformly, the highest is in base metal which is 110 HV and the lowest is in the welding joint which is 73 HV. The tensile strength of the welded joint is 281 MPa, the strength coefficient reached 70.6%. the fatigue strengths of the laser welded joint and the base metal are investigated. The results show that the conditional fatigue strength (107) of the laser welded joint can reach up to 63.6% of that of the base metal. there are fatigue striations generated during the steady-state region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-318

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive[J]. Materials Science & Engineering, 2000, 280(1): 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[2] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56(4): 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[3] Xiao R, Zhang X. Problems and issues in laser beam welding of aluminium –lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2): 166-175.

DOI: 10.1016/j.jmapro.2013.10.005

Google Scholar

[4] Yang S L, Lin Q L. Microstructures and Properties of the Al-4. 5Zn-1. 5Mg-0. 5Mn Aluminium Alloy Welding Joints[J]. Advanced Materials Research, 2011, 148-149: 640-643.

DOI: 10.4028/www.scientific.net/amr.148-149.640

Google Scholar

[5] Zhang L, Li X, Nie Z, et al. Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2015, 92: 880-887.

DOI: 10.1016/j.matdes.2015.12.117

Google Scholar

[6] Oikawa H, Ohmiya S, Yoshimura T, et al. Resistance spot welding of steel and aluminium sheet using insert metal sheet[J]. Science & Technology of welding & Joining, 2013, 4(2): 80-88.

DOI: 10.1179/136217199101537608

Google Scholar

[7] Threadgill P L, Leonard A J, Shercliff H R, et al. Friction Stir Welding of Aluminium Alloys[J]. International Materials Reviews, 2009, 54(2): 49-93.

DOI: 10.1179/174328009x411136

Google Scholar

[8] Tu J F, Paleocrassas A G. Fatigue crack fusion in thin-sheet aluminium alloys AA7075-T6 using low-speed fiber laser welding[J]. Journal of Materials Processing Technology, 2011. 211(1): 95-102.

DOI: 10.1016/j.jmatprotec.2010.09.001

Google Scholar

[9] Ambriz R R, Mesmacque G, Ruiz A, et al. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminium alloy[J]. Materials Science & Engineering A, 2010, 527(7-8): 2057-(2064).

DOI: 10.1016/j.msea.2009.11.044

Google Scholar

[10] Yan S, Chen H, Zhu Z, et al. Hybrid laser-Metal Inert Gas welding of Al-Mg-Si alloys joints: Microstructure and mechanical properties[J]. Materials & Design, 2014, 61(9): 160-167.

DOI: 10.1016/j.matdes.2014.04.062

Google Scholar

[11] Graf T, Staufer H. Laser-hybrid welding drives VW improvement[J]. Welding Journal, 2003, 82(1): 42-48.

Google Scholar

[12] Li C, Muneharua K, Takao S, et al. Fiber laser-GMA hybrid welding of commercially pure titanium[J]. Materials & Design, 2009, 30(1): 109-114.

DOI: 10.1016/j.matdes.2008.04.043

Google Scholar

[13] Liu C, Northwood D O, Bhole S D. Tensile fracture behavior in CO2 laser beam welds of 7075-T6 aluminium alloy[J]. Materials & Design, 2004, 25(7): 573-577.

DOI: 10.1016/j.matdes.2004.02.017

Google Scholar

[14] Quintino L, Costa A, Miranda R, et al. Welding with high power fiber laser-A preliminary study[J]. Materials & Design, 2007, 28(4): 1231-1237.

DOI: 10.1016/j.matdes.2006.01.009

Google Scholar

[15] Katayama S, Nagayama H, Mizutani M, et al. Fiber Laser Welding of Aluminium Alloy[J]. JLW, 2008, 46: 470-479.

Google Scholar

[16] Beyer E, Mahrle A, Lutke M, et al. Innovations in high power fiber laser application[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8237.

Google Scholar

[17] Cao X, Jahazi M. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd: YAG laser[J]. Optics & lasers in Engineering, 2009, 47(11): 1231-1241.

DOI: 10.1016/j.optlaseng.2009.05.010

Google Scholar

[18] Sun Y P, Yan H G, Chen Z H. Microstructure and mechanical properties of Al – Zn – Mg – Cu/SiC composite after heat treatment[J]. Metal Science & Heat Treatment, 2009, 51(7): 394-397.

DOI: 10.1007/s11041-009-9179-8

Google Scholar

[19] Wang F, Xiong B, Zhang Y, et al. Microstructure and mechanical properties of spray-deposited Al–10. 8Zn–2. 8Mg–1. 9Cu alloy after two-step aging treatment at 110 and 150°C[J]. Materials Characterization, 2007, 58(1): 82-86.

DOI: 10.1016/j.matchar.2006.04.004

Google Scholar

[20] Yan B, Dong X, Ma R, et al. Effects of heat treatment on microstructure, mechanical properties and damping capacity of Mg–Zn–Y–Zr alloy[J]. Materials Science & Engineering A, 2014, 594 (594): 168-177.

DOI: 10.1016/j.msea.2013.11.019

Google Scholar

[21] Xiao W, Jia S, Wang J, et al. Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy[J]. Journal of Alloys & Compounds, 2008, 458(1): 178-183.

DOI: 10.1016/j.jallcom.2007.03.118

Google Scholar

[22] Wang F, Xiong B, Zhang Y, et al. Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy processed through hot rolling and heat treatment[J]. Materials Science & Engineering A, 2009, 518(1): 144-149.

DOI: 10.1016/j.msea.2009.05.052

Google Scholar

[23] Jia Y, Cao F, Ning Z, et al. Influence of second phases on mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy[J]. Materials & Design, 2012, 40: 536-540.

DOI: 10.1016/j.matdes.2012.03.049

Google Scholar

[24] Bai Pucun, Dong Taishang, Hou Xiaohu, et al. Microstructure and mechanical properties of spray-deposited Mg–12. 55Al–3. 33Zn–0. 58Ca–1Nd alloy[J]. Materials Characterization, 2010, 61(7): 756-760.

DOI: 10.1016/j.matchar.2010.04.009

Google Scholar

[25] Wang Y, Zhang Z, Weichuang Q I, et al. Research on the influence of gap on the fatigue properties of A7N01 Aluminium alloys welded joints[J]. Electric Welding Machine, (2015).

Google Scholar

[26] Gou G, Zhang M, Chen H, et al. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminium alloy welded joints in high-speed trains[J]. Materials & Design, 2015, 85: 309-317.

DOI: 10.1016/j.matdes.2015.06.177

Google Scholar

[27] Wang C, Lu Y, Shan Q, et al. Influence of Plate Thickness on the Fatigue Properties of A7N01 Aluminium Alloys Welded Joints[C]/ International Conference on Advanced Material Engineering. (2015).

DOI: 10.1142/9789814696029_0041

Google Scholar

[28] ZHANG L, LIU X S, et al. Fatigue crack initiation for Al-Zn-Mg alloy welded joint[J]. Acta Metallurgica Sinica, 2012(3): 235-240.

Google Scholar

[29] Jian H G, Du M X, Jiang F, et al. Fatigue Characteristic of Aluminium Alloy Plates with Different Thickness[J]. Applied Mechanics & Materials, 2013, 477-478: 1284-1287.

DOI: 10.4028/www.scientific.net/amm.477-478.1284

Google Scholar

[30] Deng R, Ming L I, Zeng Y Z, et al. Weld reinforcement influence on fatigue properties of A7N01P-T4 aluminium alloy welded joints[J]. Electric Locomotives & Mass Transit Vehicles, (2013).

Google Scholar

[31] Storti M, Nigro N, Idelsohn S. Fatigue Properties of JIS Aluminium Alloys for Welded Structures[J]. Nihon Kikai Gakkai Ronbunshu A Hen/transactions of the Japan Society of Mechanical Engineers Part A, 1996, 62(601): 1966-(1971).

Google Scholar