[1]
Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive[J]. Materials Science & Engineering, 2000, 280(1): 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[2]
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56(4): 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[3]
Xiao R, Zhang X. Problems and issues in laser beam welding of aluminium –lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2): 166-175.
DOI: 10.1016/j.jmapro.2013.10.005
Google Scholar
[4]
Yang S L, Lin Q L. Microstructures and Properties of the Al-4. 5Zn-1. 5Mg-0. 5Mn Aluminium Alloy Welding Joints[J]. Advanced Materials Research, 2011, 148-149: 640-643.
DOI: 10.4028/www.scientific.net/amr.148-149.640
Google Scholar
[5]
Zhang L, Li X, Nie Z, et al. Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2015, 92: 880-887.
DOI: 10.1016/j.matdes.2015.12.117
Google Scholar
[6]
Oikawa H, Ohmiya S, Yoshimura T, et al. Resistance spot welding of steel and aluminium sheet using insert metal sheet[J]. Science & Technology of welding & Joining, 2013, 4(2): 80-88.
DOI: 10.1179/136217199101537608
Google Scholar
[7]
Threadgill P L, Leonard A J, Shercliff H R, et al. Friction Stir Welding of Aluminium Alloys[J]. International Materials Reviews, 2009, 54(2): 49-93.
DOI: 10.1179/174328009x411136
Google Scholar
[8]
Tu J F, Paleocrassas A G. Fatigue crack fusion in thin-sheet aluminium alloys AA7075-T6 using low-speed fiber laser welding[J]. Journal of Materials Processing Technology, 2011. 211(1): 95-102.
DOI: 10.1016/j.jmatprotec.2010.09.001
Google Scholar
[9]
Ambriz R R, Mesmacque G, Ruiz A, et al. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminium alloy[J]. Materials Science & Engineering A, 2010, 527(7-8): 2057-(2064).
DOI: 10.1016/j.msea.2009.11.044
Google Scholar
[10]
Yan S, Chen H, Zhu Z, et al. Hybrid laser-Metal Inert Gas welding of Al-Mg-Si alloys joints: Microstructure and mechanical properties[J]. Materials & Design, 2014, 61(9): 160-167.
DOI: 10.1016/j.matdes.2014.04.062
Google Scholar
[11]
Graf T, Staufer H. Laser-hybrid welding drives VW improvement[J]. Welding Journal, 2003, 82(1): 42-48.
Google Scholar
[12]
Li C, Muneharua K, Takao S, et al. Fiber laser-GMA hybrid welding of commercially pure titanium[J]. Materials & Design, 2009, 30(1): 109-114.
DOI: 10.1016/j.matdes.2008.04.043
Google Scholar
[13]
Liu C, Northwood D O, Bhole S D. Tensile fracture behavior in CO2 laser beam welds of 7075-T6 aluminium alloy[J]. Materials & Design, 2004, 25(7): 573-577.
DOI: 10.1016/j.matdes.2004.02.017
Google Scholar
[14]
Quintino L, Costa A, Miranda R, et al. Welding with high power fiber laser-A preliminary study[J]. Materials & Design, 2007, 28(4): 1231-1237.
DOI: 10.1016/j.matdes.2006.01.009
Google Scholar
[15]
Katayama S, Nagayama H, Mizutani M, et al. Fiber Laser Welding of Aluminium Alloy[J]. JLW, 2008, 46: 470-479.
Google Scholar
[16]
Beyer E, Mahrle A, Lutke M, et al. Innovations in high power fiber laser application[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8237.
Google Scholar
[17]
Cao X, Jahazi M. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd: YAG laser[J]. Optics & lasers in Engineering, 2009, 47(11): 1231-1241.
DOI: 10.1016/j.optlaseng.2009.05.010
Google Scholar
[18]
Sun Y P, Yan H G, Chen Z H. Microstructure and mechanical properties of Al – Zn – Mg – Cu/SiC composite after heat treatment[J]. Metal Science & Heat Treatment, 2009, 51(7): 394-397.
DOI: 10.1007/s11041-009-9179-8
Google Scholar
[19]
Wang F, Xiong B, Zhang Y, et al. Microstructure and mechanical properties of spray-deposited Al–10. 8Zn–2. 8Mg–1. 9Cu alloy after two-step aging treatment at 110 and 150°C[J]. Materials Characterization, 2007, 58(1): 82-86.
DOI: 10.1016/j.matchar.2006.04.004
Google Scholar
[20]
Yan B, Dong X, Ma R, et al. Effects of heat treatment on microstructure, mechanical properties and damping capacity of Mg–Zn–Y–Zr alloy[J]. Materials Science & Engineering A, 2014, 594 (594): 168-177.
DOI: 10.1016/j.msea.2013.11.019
Google Scholar
[21]
Xiao W, Jia S, Wang J, et al. Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy[J]. Journal of Alloys & Compounds, 2008, 458(1): 178-183.
DOI: 10.1016/j.jallcom.2007.03.118
Google Scholar
[22]
Wang F, Xiong B, Zhang Y, et al. Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy processed through hot rolling and heat treatment[J]. Materials Science & Engineering A, 2009, 518(1): 144-149.
DOI: 10.1016/j.msea.2009.05.052
Google Scholar
[23]
Jia Y, Cao F, Ning Z, et al. Influence of second phases on mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy[J]. Materials & Design, 2012, 40: 536-540.
DOI: 10.1016/j.matdes.2012.03.049
Google Scholar
[24]
Bai Pucun, Dong Taishang, Hou Xiaohu, et al. Microstructure and mechanical properties of spray-deposited Mg–12. 55Al–3. 33Zn–0. 58Ca–1Nd alloy[J]. Materials Characterization, 2010, 61(7): 756-760.
DOI: 10.1016/j.matchar.2010.04.009
Google Scholar
[25]
Wang Y, Zhang Z, Weichuang Q I, et al. Research on the influence of gap on the fatigue properties of A7N01 Aluminium alloys welded joints[J]. Electric Welding Machine, (2015).
Google Scholar
[26]
Gou G, Zhang M, Chen H, et al. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminium alloy welded joints in high-speed trains[J]. Materials & Design, 2015, 85: 309-317.
DOI: 10.1016/j.matdes.2015.06.177
Google Scholar
[27]
Wang C, Lu Y, Shan Q, et al. Influence of Plate Thickness on the Fatigue Properties of A7N01 Aluminium Alloys Welded Joints[C]/ International Conference on Advanced Material Engineering. (2015).
DOI: 10.1142/9789814696029_0041
Google Scholar
[28]
ZHANG L, LIU X S, et al. Fatigue crack initiation for Al-Zn-Mg alloy welded joint[J]. Acta Metallurgica Sinica, 2012(3): 235-240.
Google Scholar
[29]
Jian H G, Du M X, Jiang F, et al. Fatigue Characteristic of Aluminium Alloy Plates with Different Thickness[J]. Applied Mechanics & Materials, 2013, 477-478: 1284-1287.
DOI: 10.4028/www.scientific.net/amm.477-478.1284
Google Scholar
[30]
Deng R, Ming L I, Zeng Y Z, et al. Weld reinforcement influence on fatigue properties of A7N01P-T4 aluminium alloy welded joints[J]. Electric Locomotives & Mass Transit Vehicles, (2013).
Google Scholar
[31]
Storti M, Nigro N, Idelsohn S. Fatigue Properties of JIS Aluminium Alloys for Welded Structures[J]. Nihon Kikai Gakkai Ronbunshu A Hen/transactions of the Japan Society of Mechanical Engineers Part A, 1996, 62(601): 1966-(1971).
Google Scholar