[1]
LU M, XIE R Y, LIU Z L, et al. Enhancement in electrical conductive property of polypyrrole-coated cotton fabrics using cationic surfactant [J]. Journal of Applied Polymer Science, 2016, 133(32).
DOI: 10.1002/app.43601
Google Scholar
[2]
NARAYANAN S C, KARPAGAM K R, BHATTACHARYYA A. Nanocomposite Coatings on Cotton and Silk Fibers for Enhanced Electrical Conductivity [J]. Fibers and Polymers, 2015, 16(6): 1269-1275.
DOI: 10.1007/s12221-015-1269-1
Google Scholar
[3]
MAITI S, DAS D, SEN K. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2014, 187: 96-101.
DOI: 10.1016/j.mseb.2014.05.003
Google Scholar
[4]
THIEBLEMONT J C, PLANCHE M F, PETRESCU C, et al. STABILITY OF CHEMICALLY SYNTHESIZED POLYPYRROLE FILMS [J]. Synthetic Metals, 1993, 59(1): 81-96.
DOI: 10.1016/0379-6779(93)91159-y
Google Scholar
[5]
WEI Y, HSUEH K F, JANG G-W. Monitoring the chemical polymerization of aniline by open-circuit-potential measurements [J]. Polymer, 1994, 35(16): 3572-3575.
DOI: 10.1016/0032-3861(94)90927-x
Google Scholar
[6]
BABU K F, DHANDAPANI P, MARUTHAMUTHU S, et al. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property [J]. Carbohydrate Polymers, 2012, 90(4): 1557-1563.
DOI: 10.1016/j.carbpol.2012.07.030
Google Scholar
[7]
DO J-S, WANG S-H. On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers [J]. Sensors and Actuators B: Chemical, 2013, 185: 39-46.
DOI: 10.1016/j.snb.2013.04.080
Google Scholar
[8]
GUPTA N D, DAS S, DAS N S, et al. Improvement of Adhesion and Continuity of Polypyrrole Thin Films Through Surface Modification of Hydrophobic Substrates [J]. Journal of Applied Polymer Science, 2014, 131(2).
DOI: 10.1002/app.39771
Google Scholar
[9]
XU J, WANG D, YUAN Y, et al. Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template [J]. Cellulose, 2015, 22(2): 1355-1363.
DOI: 10.1007/s10570-015-0546-x
Google Scholar
[10]
BOBER P, LIU J, MIKKONEN K S, et al. Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties [J]. Biomacromolecules, 2014, 15(10): 3655-3663.
DOI: 10.1021/bm500939x
Google Scholar
[11]
CETINER S. Dielectric and morphological studies of nanostructured polypyrrole-coated cotton fabrics [J]. Textile Research Journal, 2014, 84(14): 1463-1475.
DOI: 10.1177/0040517514523180
Google Scholar
[12]
YAZHINI K B, PRABU H G. Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppy-ZnO-CNT nanocomposite [J]. Rsc Advances, 2015, 5(61): 49062-49069.
DOI: 10.1039/c5ra07487h
Google Scholar
[13]
GHORBANI M, EISAZADEH H. Synthesis and characterization of chemical structure and thermal stability of nanometer size polyaniline and polypyrrole coated on rice husk [J]. Synthetic Metals, 2012, 162(5-6): 527-530.
DOI: 10.1016/j.synthmet.2012.01.019
Google Scholar
[14]
GHORBANI M, EISAZADEH H. Fixed-bed column removal of chemical oxygen demand, anions, and heavy metals from paper mill wastewater by using polyaniline and polypyrrole nanocomposites on carbon nanotubes [J]. Journal of Vinyl & Additive Technology, 2013, 19(3): 213-218.
DOI: 10.1002/vnl.21314
Google Scholar
[15]
GHORBANI M, EISAZADEH H. Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash [J]. Composites Part B-Engineering, 2013, 45(1): 1-7.
DOI: 10.1016/j.compositesb.2012.09.035
Google Scholar
[16]
VATANI Z, EISAZADEH H. Coating of Poly(vinyl chloride) Nanoparticles With a Conductive Polyaniline in the Presence of Various Surfactants [J]. Journal of Vinyl & Additive Technology, 2013, 19(4): 233-238.
DOI: 10.1002/vnl.21319
Google Scholar