FWHM Calculation of Zircon Gem-Materials before and after Thermal Enhancement

Article Preview

Abstract:

Zircon samples from Ubon Ratchathani, Thailand; Rattanakiri, Cambodia and Dak Nong, Vietnam change their color from light brown and reddish-brown to blue color after thermal enhancement at 1000 C in reducing condition for 60 min. The high temperature is one of the factors for the zircon structure to recrystallize. The objective of this study is to describe the crystal structure of zircon samples before and after thermal enhancement. Zircon is a metamict mineral whose structure is destroyed by some trace elements. There are radioactive elements such as U and Th in the zircon structure. In this study, Raman spectroscopy was used to analyze the molecular vibration in zircon structure before and after thermal enhancement. As a result, the Raman spectra of zircon samples after thermal enhancement show the Raman shift at peak position of V3(SiO4) stretching around 1008cm-1 to higher wavenumber concerning to the full width at half maximum (FWHM) values calculated by PyMCA software. The results could be summarized that the metamict zircon will be recrystallized to the crystalline zircon after thermal enhancement. The advantage of this study is about the identification of zircon before and after thermal enhancement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-603

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zang, E. K. H. Salje, R. C. Ewing, P. Daniel, T. Geiseler, Applications of near-infrared FT-Raman spectroscopy in metamict and annealed zircon: oxidation state of U ions, Phys. Chem. Mineral. 31 (2004) 405-414.

DOI: 10.1007/s00269-004-0399-6

Google Scholar

[2] L. Naslada, M. Wenzel, G. Vavra, G. Irmer, T Wenzel, B. Kober, Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contrib. Mineral. Petrol. 141 (2001) 125-144.

DOI: 10.1007/s004100000235

Google Scholar

[3] B. A. Kolesov, C. A. Geiger, T. Armbruster, The dynamic propoties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy, Eur. J. Mineral. 13 (2001) 939-948.

DOI: 10.1127/0935-1221/2001/0013-0939

Google Scholar

[4] L. Naslada, G. Irmer, D. Wolf, The degree of metamictzation in zircon: a Raman spectroscopy study, Eur. J. Mineral. 7 (1995) 471-468.

Google Scholar

[5] M. Zang, E. K. H. Salje, I. Farnan, A. Graeme-Barber, P. Daniel, R. C. Ewing, A. M. Clark, H. Leroux, Metamictization of zircon: Raman spectroscopic study, J. Phys. Condens. Mater. 12 (2000) 1915-(1925).

DOI: 10.1088/0953-8984/12/8/333

Google Scholar

[6] A. Marsellos, J. I. Garver, Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation, American Mineralogist. 95 (2010) 1192-1201.

DOI: 10.2138/am.2010.3264

Google Scholar

[7] S. Satitkune, B. Wanthanachaisaeng, K. Won-in, W. Wongkokau, P. Chantararat, T. Leelawattanasuk, P. Wathanakul, Heat treatment of zircon samples from Kanchanaburi, Thailand and Ratanakiri, Cambodia, Proc 33rd International Gemmological Conference, Vietnam, 2013; 158-160.

Google Scholar

[8] R. Chooyoung, N. Monarumit, C. Boonmee, A. Phlayrahan, S. Satitkune, Thermal enhancement of zircon samples from Chanthaburi and Kanchanaburiprocince, Thailand and Rattanakiri, Cambodia, Proc 4th International Gem and Jewelry Conference, Thailand, 2014, pp.122-125.

Google Scholar

[9] K. Elise, W. Quentin, High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K, American Mineralogy. 78 (1993) 245-252.

Google Scholar

[10] R. W. G. Syme, D. J. Lockwood, J. Kerr, Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4), J. Phys. C: Solid State Phys. 10 (1977) 1335-1348.

DOI: 10.1088/0022-3719/10/8/036

Google Scholar