Frequent Failures of FRC Industrial Floors

Article Preview

Abstract:

Floors in industrial buildings are often loaded with heavy traffic or stored material. For this reason floors are often created by fiber-reinforced concrete. Fibers contribute to larger impact - or abrasion resistance. The issue of design of fiber concrete slabs is quite complicated. Poorly designed layer structure under slabs or poorly subsoil can have very important effect of result properties and create the first group of source of problem. The second group of causes of problems is real implementation of concrete slab primarily the amount of fibers and correct and even placement. If amount or placement of fibers are incorrectly then significant failure can arise. This paper deals with frequently failures of FRC floors in practice. It will be described several buildings in which were fiber concrete slab constructed and where some failure arose. It will be presented what kind and what range of failure arose. Causes of failures will be also described in this paper. Also possible solution of problem will be designed if it exist.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-226

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Wang, J. Wang, Finite element method for analysis of SFRC industrial ground floors, Gongcheng Lixue/Engineering Mechanics. 28 (2011) 129-134.

Google Scholar

[2] L. G. Sorelli, A. Meda, G.A. Plizzari, Steel fiber concrete slabs on ground: a structural matter, ACI Structural Journal. 103 (2006) 551-558.

DOI: 10.14359/16431

Google Scholar

[3] Y. Ding, W. Kusterle, Compressive stress-strain relationship of steel fibre-reinforced concrete at early age, Cement and Concrete Research. 30 (2000) 1573-1579. DOI: 10. 1016/S0008-8846(00)00348-3.

DOI: 10.1016/s0008-8846(00)00348-3

Google Scholar

[4] J. Michels, D. Waldmann, S. Maas, A. Zürbes, Steel fibers as only reinforcement for flat slab construction - Experimental investigation and design, Construction and Building Materials. 26 (2012).

DOI: 10.1016/j.conbuildmat.2011.06.004

Google Scholar

[5] H. Song, H. Wang, Static mechanical properties and impact resistance of steel fiber reinforced high-strength lightweight aggregate concrete, Advanced Materials Research. 261-263 (2011).

DOI: 10.4028/www.scientific.net/amr.261-263.115

Google Scholar

[6] N.D. Gouveia, N.A.G. Fernandes, D.M.V. Faria, A.M.P. Ramos, V.J.G. Lúcio, SFRC flat slabs punching behaviour - Experimental research, Composites Part B: Engineering. 63 (2014) 161-171. DOI: 10. 1016/j. compositesb. 2014. 04. 005.

DOI: 10.1016/j.compositesb.2014.04.005

Google Scholar

[7] P. Mynarcik, Measurement processes and destructive testing of fiber concrete foundation slab pattern, Advanced Material Research. 1020 (2014) 221-226. DOI: 10. 4028/www. scientific. net/AMR. 1020. 221.

DOI: 10.4028/www.scientific.net/amr.1020.221

Google Scholar

[8] Cajka R., Burkovic K., Buchta V., Foundation slab in interaction with subsoil, Advanced Materials Research. 838-841 (2014) 375-380. DOI: 10. 4028/www. scientific. net/AMR. 838-841. 375.

DOI: 10.4028/www.scientific.net/amr.838-841.375

Google Scholar

[9] V. Buchta, M. Janulikova, R. Fojtik, Experimental Tests of Reinforced Concrete Foundation Slab, Procedia Engineering. 114 (2015) pp.530-537. DOI: 10. 1016/j. proeng. 2015. 08. 102.

DOI: 10.1016/j.proeng.2015.08.102

Google Scholar

[10] R. E. Smith, R. E. Wilde, Rehabilitating industrial floors with SFRC overlays, Concrete International. 18 (1996) 35-38.

Google Scholar

[11] L. Lanzoni, A. Nobili, E. Radi, A. Sorzia, Failure mechanism of FRC slabs on non-local ground, Meccanica. 51 (2016) 2473-2492. DOI: 10. 1007/s11012-016-0382-6.

DOI: 10.1007/s11012-016-0382-6

Google Scholar

[12] N. Jafarifar, K. Pilakoutas, T. Bennett, The effect of shrinkage cracks on the load bearing capacity of steel-fibre-reinforced roller-compacted-concrete pavements, Materials and Structures. 49 (2016) 2329-2347. DOI: 10. 1617/s11527-015-0652-0.

DOI: 10.1617/s11527-015-0652-0

Google Scholar

[13] Mynarcik P., Labudkova J., Koktan J., Experimental and numerical analysis of interaction between subsoil and post-ensioned slab-on-ground, Jurnal Teknologi. 78 (2016) 23-27. DOI: 10. 11113/jt. v78. 8530.

DOI: 10.11113/jt.v78.8530

Google Scholar

[14] R. Cajka, J. Labudkova, Fibre Concrete Foundation Slab Experiment and FEM Analysis, Key Engineering Materials. 627 (2015) 441-444. DOI: 10. 4028/www. scientific. net/KEM. 627. 441.

DOI: 10.4028/www.scientific.net/kem.627.441

Google Scholar

[15] A. Kohoutkova, J. Vodicka, V. Kristek, Creep and Shrinkage of Fibre-Reinforced Concrete and a Guide for Modeling, in: Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, 2015, pp.707-713.

DOI: 10.1201/9780203882955-27

Google Scholar

[16] M. Janulikova, The New Options to Reduce Shear Stress into Foundation Structure, Procedia Engineering. 114 (2015) pp.514-521. DOI: 10. 1016/j. proeng. 2015. 08. 100.

DOI: 10.1016/j.proeng.2015.08.100

Google Scholar

[17] M. Janulikova, Behavior of selected materials to create sliding joint in the foundation structure, Advanced Materials Research. 838-841 (2014) 454-457. DOI: 10. 4028/www. scientific. net/AMR. 838-841. 454.

DOI: 10.4028/www.scientific.net/amr.838-841.454

Google Scholar

[18] F. R. Mansour, S. Parniani, I. S. Ibrahim, Experimental Study on Effects of Steel Fiber Volume on Mechanical Properties 1f SFRC, Advanced Materials Research. 214 (2011) 144-148.

DOI: 10.4028/www.scientific.net/amr.214.144

Google Scholar