[1]
K.H. Gudmundsson, F. Jonsdottir, F. Thorsteinsson, A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee, Smart Materials and Structures, DOI 10. 1088/0964-1726/19/3/035023, (2010).
DOI: 10.1088/0964-1726/19/3/035023
Google Scholar
[2]
D. Senkal, H. Gurocak, E.I. Konukseven, Passive haptic interface with mr-brakes for dental implant surgery, Presence: Teleoperators and Virtual Environments, 20: 207-222, (2011).
DOI: 10.1162/pres_a_00045
Google Scholar
[3]
L. Ma, L. Yu, J. Song, W. Xuan, X. Liu, Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles, SAE Technical Paper, DOI 10. 4271/2015-01-0724, (2015).
DOI: 10.4271/2015-01-0724
Google Scholar
[4]
Y.J. Shiao, Q.A. Nguyen, Torque Enhancement for a New Magnetorheological Brake, Procedia Engineering, 76: 12-23, (2014).
DOI: 10.1016/j.proeng.2013.10.001
Google Scholar
[5]
Y.J. Shiao, Q.A. Nguyen, G.D. Huang, The Analysis of Magnetorheological Brake Structure with Multiple Poles, Applied Mechanics and Materials, 479-480: 416-420, (2014).
DOI: 10.4028/www.scientific.net/amm.479-480.416
Google Scholar
[6]
Y.J. Shiao, Q.A. Nguyen, Z. Zhang, Design and experiment of a new magnetorheological brake, International Journal of Applied Electromagnetics and Mechanics, 48: 309-326, (2015).
DOI: 10.3233/jae-130183
Google Scholar
[7]
L. Ma, L. Yu, Z. Wang, J. Song, Design and Development of an Automotive Magneto-Rheological Brake System, SAE Technical Paper, DOI 10. 4271/2013-01-2061, (2013).
DOI: 10.4271/2013-01-2061
Google Scholar
[8]
Q.H. Nguyen, S.B. Choi, Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux, Smart Materials and Structures, 21: 55003-55012, (2012).
DOI: 10.1088/0964-1726/21/5/055003
Google Scholar
[9]
C.Y. Liu, K.J. Jiang, F.Y. Yi, Numerical analysis of inner flow field for cylindrical magnetorheological brake, Journal of System Simulation in Chinese, 23: 628-631, (2011).
Google Scholar
[10]
J. Zheng, X.J. Cao, G.H. Zhang, Numerical evaluation for transient flow characteristic of magnetorheological fluid in the transmission device, Journal Of Xi'an Jiao Tong University in Chinese, 41: 1053-1057, (2007).
Google Scholar
[11]
J. Zheng, G.H. Zhang, X.J. Cao, Flow analysis of magnetorheological fluid in transmission device in steady state, J. Cent. South Univ. (Science and Technology) in Chinese, 39: 149-154, (2008).
Google Scholar
[12]
S.X. Zhu, W. Wu, Analysis for rheological properties of magneto-rheological fluid at the damping channel, Machine Tool and Hydraulics in Chinese, 43: 113-115, (2015).
Google Scholar
[13]
D. Wang, Y. Hou, Z. Tian, Q. Meng, Temperature rise characteristic of MR fluid in a multi-disc MR clutch under slip condition, Industrial Lubrication and Tribology, 67: 85-92, (2015).
DOI: 10.1108/ilt-08-2012-0070
Google Scholar
[14]
D. Wang, B. Zi, Y. Zeng, F. Xie, Y. Hou, An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch, Smart Materials and Structures, DOI 10. 1088/0964-1726/24/5/055020, (2015).
DOI: 10.1088/0964-1726/24/5/055020
Google Scholar
[15]
S.R. Patil, K.P. Powar, S.M. Sawant, Thermal analysis of magnetorheological brake for automotive application, Applied Thermal Engineering, 98: 238-245, (2016).
DOI: 10.1016/j.applthermaleng.2015.11.128
Google Scholar
[16]
T.H. Nam, K.K. Ahn, A new structure of a magnetorheological brake with the waveform boundary of a rotary disk, Smart Materials and Structures, DOI 10. 1088/0964-1726/18/11/115029, (2009).
DOI: 10.1088/0964-1726/18/11/115029
Google Scholar
[17]
E.S. Kim, S.B. Choi, Y.G. Park, S. Lee, Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch, Smart Materials and Structures, DOI 10. 1088/0964-1726/19/10/107001, (2010).
DOI: 10.1088/0964-1726/19/10/107001
Google Scholar
[18]
M.A. Moyers-Gonzalez, I.A. Frigaard, Numerical solution of duct flows of multiple visco-plastic fluids, Journal of non-newtonian fluid mechanics, 122: 227-241, (2004).
DOI: 10.1016/j.jnnfm.2003.12.010
Google Scholar
[19]
A. Cantelli, Uniform flow of modified Bingham fluids in narrow cross sections, Journal of Hydraulic Engineering, 135: 640-650, (2009).
DOI: 10.1061/(asce)hy.1943-7900.0000092
Google Scholar
[20]
J. Zheng, Y. Li, Z. Li, J. Wang, Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles–Atherton hysteresis model, Smart Materials and Structures, DOI 10. 1088/0964-1726/24/10/105024, (2015).
DOI: 10.1088/0964-1726/24/10/105024
Google Scholar
[21]
S.R. Gorodkin, R.O. James, W.I. Kordonski, Magnetic properties of carbonyl iron particles in magnetorheological fluids, Journal of Physics: Conference Series, DOI 10. 1088/1742-6596/149/1/012051, (2009).
DOI: 10.1088/1742-6596/149/1/012051
Google Scholar
[22]
Q.H. Nguyen, S.B. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat, Smart Materials and Structures, DOI 10. 1088/0964-1726/19/11/115024, (2010).
DOI: 10.1088/0964-1726/19/11/115024
Google Scholar