Material Characterization of Hybrid Composite: Experimental Using Strain Gauge/DIC with Finite Element Modelling Macro/Micro Scale

Article Preview

Abstract:

The study presents the multi methods of determining mechanical properties and mechanical characterization under tensile loading of hybrid composite in the form of experimental technique involving measurement of strain using strain gauge and digital image correlation (DIC) technique utilizing open source platform Ncorr to compute the strain on surface of hybrid composite. The method of micro mechanical modelling using Finite Element Modelling (FEM) in the mode of representation volume element (RVE) method and macro scale FEM using commercial software Ansys have been performed to compute the modulus of elasticity in direction of uniaxial tensile loading. The four methods then compared which yields very consistent results with each other. It is observed that all four methods are reliable in determining mechanical properties of unidirectional single composite as well as hybrid composite. The experimental involved the use of ASTM D3039 standard tensile test for hybrid composite and strain are measured using strain gauges and DIC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-40

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Abrate; Composites Engineering Hand book, Marcel Dekker, (1997).

Google Scholar

[2] Reddy, J., and Reddy, J. (2004). Mechanics of laminated composite plates and shells. Boca Raton: CRC Press.

Google Scholar

[3] HRN EN ISO 527-4: 2008 Plastics: Determination of tensile properties, Part 4: Test conditions for isotropic and orthotropic fibre reinforced plastic composites).

DOI: 10.3403/30409901

Google Scholar

[4] Gay D, Hoa SV and Tsai SW, Composite materials. Design and applications, Boca Raton, FL: CRC Press, (2003).

Google Scholar

[5] Tomasz Brynk, , Rafal M. Molak, Miroslawa Janiszewska, Zbigniew Pakiela, Digital Image Correlation measurements as a tool of composites deformation description, Computational Materials Science Volume 64, November 2012, Pages 157–161.

DOI: 10.1016/j.commatsci.2012.04.034

Google Scholar

[6] Jerabek, Z. Major and R. W. Lang, Strain determination of polymeric materials using digital image correlation, Polym. Test., 29 (2010) 407–417.

DOI: 10.1016/j.polymertesting.2010.01.005

Google Scholar

[7] Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44(4), 497–524.

DOI: 10.1016/0022-5096(96)00007-5

Google Scholar

[8] Gusev, A., 1997, Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids 45, 1449–1459.

DOI: 10.1016/s0022-5096(97)00016-1

Google Scholar

[9] Terada K., Hori M., Kyoya T., Kikuchi N., 2000, Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37, 2285-2311.

DOI: 10.1016/s0020-7683(98)00341-2

Google Scholar

[10] Matthew F L, Davies G A O, Hitchings D, Soutis C 2000 Finite element modeling of composite materials and structures (CRC Press: Woodhead Publishing Limited.

Google Scholar

[11] M. Moravcík, P. Kotula, and F. Bahleda, Experimental and FEM analysis of hybrid composite structures with GFRP elements, Procedia Engineering, vol. 40, p.268–273, (2012).

DOI: 10.1016/j.proeng.2012.07.092

Google Scholar

[12] P. F. Liu, J. Y. Zheng, Recent developments on damage modeling and finite element analysis for composite laminates: A review, Material and Design, Vol. 31, pp.3825-3834, (2010).

DOI: 10.1016/j.matdes.2010.03.031

Google Scholar

[13] Ansys Manual Documentation 12. 1 Mechanical APDL, (2010).

Google Scholar

[14] P.W. Manders, M.G. Bader, The strength of hybrid glass/carbon fibre composites. Part 1 Failure strain enhancement and failure mode, Journal of Materials Science, Vol. 16, pp.2233-2245, (1981).

DOI: 10.1007/bf00542386

Google Scholar

[15] Swolfs, Y., Gorbatikh, L., Verpoest, I.: Fibre hybridisation in polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 67(2014), 181-200.

DOI: 10.1016/j.compositesa.2014.08.027

Google Scholar

[16] C. L. Tan, A. I. Azmi, and N. Mohamad, Performance Evaluations of Carbon/Glass Hybrid Polymer Composites, Adv. Mater. Res, Vol. 980, p.8–12, Jun. (2014).

DOI: 10.4028/www.scientific.net/amr.980.8

Google Scholar

[17] Y. Swolfs, L. Gorbatikh, and I. Verpoest, Fiber Hybridisation In Polymer Composites: A Review, Compos. Part A, vol. 67, p.181–200, (2014).

DOI: 10.1016/j.compositesa.2014.08.027

Google Scholar

[18] M. N. Gururaja and A.N. Hari Rao, A review on recent applications and future prospectus of hybrid composites, International Journal of Soft Computing and Engineering (IJSCE), Vol. 1 (6), p.352 – 355, (2012).

Google Scholar

[19] Jin Zhang, Khunlavit Chaisombat, Shuai He and Chun H. Wang; Hybrid composite laminates reinforced with glass/carbon woven fabrics for light weight load bearing structures, Mater Design, Vol. 36, pp.75-80, (2012).

DOI: 10.1016/j.matdes.2011.11.006

Google Scholar