Synergistic Effects of Titanium Dioxide and Zinc Borate on Thermal Degradation and Water Resistance of Epoxy Based Intumescent Fire Retardant Coatings

Article Preview

Abstract:

Abstract. This studies discuss the synergistic effects of titanium dioxide (TiO2) and zinc borate on thermal stability and water resistance of intumescent fire retardant coatings. TiO2 in association with a traditional intumescent flame retardant system which contains ammonium polyphosphate/expandable graphite/melamine/ zinc borate (APP–EG–MEL-ZB) was introduced to epoxy based coatings to improve the fire resistance. The influences of TiO2 on the properties of the coatings were investigated in detail by using Bunsen burner fire test, thermogravimetric analysis (TGA), scanning electron microscope (SEM) and water immersion test. Bunsen burner test revealed that incorporation of titanium dioxide in intumescent formulation reduced the steel substrate temperature from 240 °C to 116 °C. The TGA results proved that addition of TiO2 could enhance the anti-oxidation of the char layers and increase the residue weights of the coatings. The FESEM images demonstrated that addition of TiO2 could improve the foam structure of the char residue. Sea water resistance test demonstrated that the optimum mass % age of TiO2 (6%) exhibited great synergism with natural anti-corrosion agent, zinc borate, and improved corrosion resistance performance of intumescent coating formulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-47

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jimenez, S. Duquesne, and S. Bourbigot, Intumescent fire protective coating: Toward a better understanding of their mechanism of action, Thermochimica Acta, vol. 449, pp.16-26, 10/1/ (2006).

DOI: 10.1016/j.tca.2006.07.008

Google Scholar

[2] F. Ahmad, S. Ullah, W. F. Mohammad, and M. F. Shariff, Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application, in IOP Conference Series: Materials Science and Engineering, 2014, p.012023.

DOI: 10.1088/1757-899x/60/1/012023

Google Scholar

[3] W. F. Mohamad, F. Ahmad, and S. Ullah, Effect of inorganic fillers on thermal performance and char morphology of intumescent fire retardant coating, Asian J. Sci. Res, vol. 6, pp.263-271, (2013).

DOI: 10.3923/ajsr.2013.263.271

Google Scholar

[4] S. Duquesne, S. Magnet, C. Jama, and R. Delobel, Intumescent paints: fire protective coatings for metallic substrates, Surface and Coatings Technology, vol. 180, pp.302-307, (2004).

DOI: 10.1016/j.surfcoat.2003.10.075

Google Scholar

[5] S. Ullah and F. Ahmad, Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating, Polymer Degradation and Stability, vol. 103, pp.49-62, 5/ (2014).

DOI: 10.1016/j.polymdegradstab.2014.02.016

Google Scholar

[6] S. Ullah, F. Ahmad, A. M. Shariff, and M. A. Bustam, Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate, Polymer Degradation and Stability, vol. 110, pp.91-103, 12/ (2014).

DOI: 10.1016/j.polymdegradstab.2014.08.017

Google Scholar

[7] F. Ahmad, S. Ullah, and M. S. Hamizol, To Study the Effect of Aluminium Trihydrate and Fumed Silica on Intumescent Fire Retardant Coating, Journal of Applied Sciences, vol. 12, p.2631, (2012).

DOI: 10.3923/jas.2012.2631.2635

Google Scholar

[8] J. H. Troitzsch, Overview of flame retardants, Chemistry today, vol. 16, (1998).

Google Scholar

[9] K. S. Betts, New thinking on flame retardants, Environmental Health Perspectives, vol. 116, p. A210, (2008).

Google Scholar

[10] S. Ullah, F. Ahmad, and P. Yusoff, Effect of boric acid and melamine on the intumescent fire‐retardant coating composition for the fire protection of structural steel substrates, Journal of Applied Polymer Science, vol. 128, pp.2983-2993, (2013).

DOI: 10.1002/app.38318

Google Scholar

[11] S. Bourbigot, M. Le Bras, R. Leeuwendal, K. K. Shen, and D. Schubert, Recent advances in the use of zinc borates in flame retardancy of EVA, Polymer degradation and stability, vol. 64, pp.419-425, (1999).

DOI: 10.1016/s0141-3910(98)00130-x

Google Scholar

[12] D. M. Schubert, F. Alam, M. Z. Visi, and C. B. Knobler, Structural characterization and chemistry of the industrially important zinc borate, Zn [B3O4 (OH) 3], Chemistry of materials, vol. 15, pp.866-871, (2003).

DOI: 10.1002/chin.200320010

Google Scholar

[13] H. Li, Z. Hu, S. Zhang, X. Gu, H. Wang, P. Jiang, et al., Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants, Progress in Organic Coatings, vol. 78, pp.318-324, 1/ (2015).

DOI: 10.1016/j.porgcoat.2014.08.003

Google Scholar

[14] Z. Wang, E. Han, and W. Ke, Effect of acrylic polymer and nanocomposite with nano-SiO 2 on thermal degradation and fire resistance of APP–DPER–MEL coating, Polymer Degradation and Stability, vol. 91, pp.1937-1947, (2006).

DOI: 10.1016/j.polymdegradstab.2006.03.001

Google Scholar

[15] E. ASTM, 119-05a Standard Test Methods for Fire Tests of Building Construction and Materials, ed: ASTM International. West Conshohocken. Pennsylvania, (2005).

Google Scholar

[16] G. Wang and J. Yang, Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure, Progress in Organic Coatings, vol. 70, pp.150-156, (2011).

DOI: 10.1016/j.porgcoat.2010.10.007

Google Scholar

[17] C. Feng, Y. Zhang, D. Liang, S. Liu, Z. Chi, and J. Xu, Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites, Journal of Analytical and Applied Pyrolysis, vol. 115, pp.224-232, 9/ (2015).

DOI: 10.1016/j.jaap.2015.07.019

Google Scholar

[18] K. Apaydin, A. Laachachi, V. Ball, M. Jimenez, S. Bourbigot, and D. Ruch, Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 469, pp.1-10, 3/20/ (2015).

DOI: 10.1016/j.colsurfa.2014.12.021

Google Scholar

[19] R. G. Puri and A. S. Khanna, Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel, Progress in Organic Coatings, vol. 92, pp.8-15, 3/ (2016).

DOI: 10.1016/j.porgcoat.2015.11.016

Google Scholar

[20] T. Orhan, N. A. Isitman, J. Hacaloglu, and C. Kaynak, Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate), Polymer Degradation and Stability, vol. 96, pp.1780-1787, 10/ (2011).

DOI: 10.1016/j.polymdegradstab.2011.07.019

Google Scholar

[21] Z. Wang, E. Han, and W. Ke, An investigation into fire protection and water resistance of intumescent nano-coatings, Surface and Coatings Technology, vol. 201, pp.1528-1535, 10/5/ (2006).

DOI: 10.1016/j.surfcoat.2006.02.021

Google Scholar

[22] G. Wang and J. Yang, Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure, Surface and Coatings Technology, vol. 204, pp.1186-1192, 1/15/ (2010).

DOI: 10.1016/j.surfcoat.2009.10.040

Google Scholar