A Review of Subsurface Crack Initiation Models in High-Cycle Fatigue for Titanium Alloys

Article Preview

Abstract:

The characterization of subsurface fatigue crack initiate sites of near α and α-β types titanium alloys and their cracking models proposed were reviewed. The crack initiation sites consisted of facets mostly on near basal plane of α grain, although the crystallographic orientation and surface topography of the facets presented a subtle difference. The crack initiation mechanisms were a quasi-cleavage accompanying high normal stress on the plane, a combination of basal slip and normal stress across the basal plane, and a pure slip on facet plane inclined near 45 degree to loading axis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Umezawa, M. Morita, T. Yuasa, S. Morooka, Y. Ono, T. Yuri and T. Ogata, Analyses of heterogeneous deformation and subsurface fatigue crack generation in alpha titanium alloy at low temperature, Advances in Cryogenic Engineering Materials, Vol. 60 AIP Conf. Proc. 1574 (2014).

DOI: 10.1063/1.4860601

Google Scholar

[2] O. Umezawa and K. Nagai, Subsurface crack generation in high-cycle fatigue for high strength alloys, ISIJ Inter., 37 (1997) 1170-1179.

DOI: 10.2355/isijinternational.37.1170

Google Scholar

[3] O. Umezawa, T. Ogata, T. Yuri, K. Nagai and K. Ishikawa, Review of high cycle fatigue properties of structural materials at cryogenic temperatures, Advances in Cryogenic Engineering Materials, Vol. 40 (1994) 1231-1238.

DOI: 10.1007/978-1-4757-9053-5_156

Google Scholar

[4] M. Hamada and O. Umezawa, Evaluation of subsurface fatigue crack life in forged Ti-6Al-4V alloys at cryogenic temperature, ISIJ Inter., 49 (2009) 124-131.

DOI: 10.2355/isijinternational.49.124

Google Scholar

[5] O. Umezawa, M. Hamada and T. Tatsumi, Evaluation of fatigue crack growth in a-titanium alloys, Procedia Materials Science, 12 (2016) 48-53.

DOI: 10.1016/j.mspro.2016.03.009

Google Scholar

[6] H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki and K. Kokubo, Cyclic deformation, dislocation structure, and internal fatigue crack generation in a Ti-Fe-O alloy at liquid nitrogen temperature, Metall. Mater. Trans. A, 31A (2000) 2793-2805.

DOI: 10.1007/bf02830339

Google Scholar

[7] T. Yuasa, O. Umezawa and Y. Ono, Influence of random grain-orientation distribution on low temperature fatigue strength for near a–titanium alloy, CAMP-ISIJ, 24 (2011) 1058.

Google Scholar

[8] F. Brider, P. Villechaise and J. Mendez, Slip and fatigue crack formation processes in an a/b titanium alloy in relation to crystallographic texture on different scales, Acta Mater., 56 (2008) 3951-3962.

DOI: 10.1016/j.actamat.2008.04.036

Google Scholar

[9] D.F. Neal and P.A. Blenkinsop, Internal fatigue origins in a-b titanium alloys, Acta Metal., 24 (1976) 59-63.

DOI: 10.1016/0001-6160(76)90147-4

Google Scholar

[10] A.L. Pilchak, A. Bhattacharjee, A.H. Rosenberger and J.C. Williams, Low ∆K faceted crack growth in titanium alloys, Inter. J. Fatigue, 31 (2009) 989-994.

DOI: 10.1016/j.ijfatigue.2008.03.036

Google Scholar

[11] A.L. Pilchak and J.C. Williams, Effect of yttrium on the fatigue behavior on investment-cast and wrought Ti-6Al-4V, Metall. Mater. Trans. A, 40A (2009) 2603-2615.

DOI: 10.1007/s11661-009-9953-7

Google Scholar

[12] A.L. Pilchak, R.E.A. Williams and J.C. Williams, Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V, Metall. Mater. Trans. A, 41A (2010) 106-124.

DOI: 10.1007/s11661-009-0064-2

Google Scholar

[13] R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters and R.O. Ritchie, Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: bimodal vs. lamellar structure, Metall. Mater. Trans. A, 33A (2002) 899-918.

DOI: 10.1007/s11661-002-0160-z

Google Scholar

[14] J.A. Ruppen, D. Eylon and A.J. Mcevily, Subsurface fatigue crack initiation of b–annealed Ti-6Al-4V, Metall. Trans. A, 11A (1980) 1072-1075.

DOI: 10.1007/bf02654723

Google Scholar

[15] I. Bantounas, D. Dye and T.C. Lindley, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V, Acta Mater., 57 (2009) 3584-3595.

DOI: 10.1016/j.actamat.2009.04.018

Google Scholar

[16] I. Bantounas, D. Dye and T.C. Lindley, The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue, Acta Mater., 58 (2010) 3908-3918.

DOI: 10.1016/j.actamat.2010.03.036

Google Scholar

[17] D.L. Davidson and D. Eylon, Metall. Titanium alloy fatigue fracture facet investigation by selected area electron channeling, Mater. Trans. A, 11A (1980) 837-843.

DOI: 10.1007/bf02661213

Google Scholar

[18] M.R. Bache, W.J. Evans and H.M. Davies, Electron back scattered diffraction (EBSD) analysis of quasi-cleavage and hydrogen induced fractures under cyclic and dwell loading in titanium alloys, J. Mater. Sci., 32 (1997) 3435-3442.

Google Scholar

[19] M.R. Bache, M. Cope, H.M. Davies, W.J. Evans and G. Harrison, Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature, Int. J. Fatigue, 19 Suppl. 1 (1997) S83-88.

DOI: 10.1016/s0142-1123(97)00020-0

Google Scholar

[20] E.E. Sackett, L. Germain and M.R. Bache, Crystal plasticity, fatigue crack initiation and fatigue performance of advanced titanium alloys, Inter. J. Fatigue, 29 (2007) 2015-(2021).

DOI: 10.1016/j.ijfatigue.2006.12.011

Google Scholar

[21] V. Sinha, M.J. Mills and J.C. Willimas, Crystallography of fracture facets in a near-alpha titanium alloy, Metall, Mater. Trans. A, 37A (2006) 2015-(2026).

DOI: 10.1007/s11661-006-0144-5

Google Scholar

[22] V. Sinha, M.J. Mills, J.C. Williams, Determination of crystallographic orientation of dwell-fatigue fracture facets in Ti-6242 alloy, J. Mater. Sci., 42 (2007) 8334-8341.

DOI: 10.1007/s10853-006-0252-z

Google Scholar

[23] C.J. Szczepanski, S.K. Jha, J.M. Larsen and J.W. Jones, Microstructural influences on very-high-cycle fatigue-crack initiation in Ti-6246, Metall. Mater. Trans. A, 39A (2008) 2841-2851.

DOI: 10.1007/s11661-008-9633-z

Google Scholar

[24] C.C. Wojcik, K.S. Chan and D.A. Koss, Stage Ⅰ fatigue crack propagation in a titanium alloy, Acta Metal., 36 (1988) 1261-1270.

DOI: 10.1016/0001-6160(88)90278-7

Google Scholar

[25] A.L. Pilchak and J.C. Williams, Observations of facet formation in near-a titanium and comments on the role of hydrogen, Metall. Mater. Trans. A, 42A (2011) 1000-1027.

DOI: 10.1007/s11661-010-0507-9

Google Scholar

[26] Y. Ono, M. Demura, T. Yuri, T. Ogata, S. Matsuoka and S. Hori, Crystallographic orientation analysis of fatigue crack initiation site formed at cryogenic temperature in Ti-5Al-2. 5Sn ELI forged alloy, Trans. Jpn. Soc. Mech. Eng. Ser. A, 74 (2008).

DOI: 10.1299/kikaia.74.329

Google Scholar

[27] O. Umezawa, K. Nagai, H. Yokoyama and T. Suzuki, Effect of microstructure on the subsurface crack initiation of Ti-6Al-4V alloys, High Cycle Fatigue of Structural Materials, eds. by W.O. Soboyejo, T.S. Srivatsan, TMS, Warrendale, (1997) 287-298.

DOI: 10.2355/isijinternational.37.1237

Google Scholar

[28] I. Bantounas, T.C. Lindley, D. Rugg and D. Dye, Effect of microtexture on fatigue cracking in Ti-6Al-4V, Acta Mater., 55 (2007) 5655-5665.

DOI: 10.1016/j.actamat.2007.06.034

Google Scholar

[29] E.D. Levine, Deformation mechansims in titanium at low temperatures, Trans. Met. Soc. AIME, 236 (1966) 1558-1564.

Google Scholar

[30] J.C. Williams, R.G. Baggerly and N.E. Paton, Deformation behavior of HCP Ti-Al alloy single crystals, Metall. Mater. Trans. A, 33 (2002) 837-850.

DOI: 10.1007/s11661-002-0153-y

Google Scholar

[31] M. Morita and O. Umezawa, Slip deformation analysis based on full constraints model for a–titanium alloy at low temperature, Mater. Trans., 52 (2011) 1595-1602.

DOI: 10.2320/matertrans.l-m2011815

Google Scholar

[32] M.R. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, Int. J. Fatigue 25 (2003) 1079-1087.

DOI: 10.1016/s0142-1123(03)00145-2

Google Scholar

[33] A.N. Stroh, The formation of cracks as a result of plastic flow, Proc. Roy. Soc., A223 (1954) 404-414.

Google Scholar

[34] M. Morita and O. Umezawa, Analysis of heterogeneous deformation behavior by full constraints model in alpha-titanium alloy, Proc. of the 12th World Conference on Titanium (Ti-2011), eds by L. Zhou, H. Chang, Y. Yu, D. Xu, Science Press Beijing, Vol. 2 (2012).

Google Scholar