Light Weight Vehicle in Natural Fibre Composite

Article Preview

Abstract:

Combined with shared service points in prime locations the use of Light Electric Vehicles (LEV) can help optimize the cost expensive „last mile“ of parcel service. [1] At the same time, a shared service point enables the switch from diesel driven engines to muscle-powered electric driving in cities. It is known, that in city operating courier services up to 80 % of actual used diesel fuel can be substituted by muscle supported electric driving. [2] To cover the needs of global operating parcel services a muscle-power supported LEV must meet the requirements of ergonomics (regarding usability in the modes drive and delivery) and parcel security. To gain economic benefits the construction of LEV for parcel delivery should be flexible enough to meet specific needs in cities - like the topography of the roadways, daily amount of goods to deliver and the legal provision at the local situation. Production of LEV in small and medium enterprises will unlock a niche for first industrial uses of Natural Fiber Composites (NFC) in load-bearing structures. By pre-impregnation a replicable quality will bring the structural light-weight construction with NFC to new fields of use, as the construction of a LEV will demonstrate. At the end of its life cycle, the vehicle proves further economic and ecological benefits due to the use of NFC: A cost effective thermal conversion under a reduced release of fossil CO2 is guaranteed. [3; 4]

You might also be interested in these eBooks

Info:

Periodical:

Pages:

753-759

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] https: /www. bentobox-berlin. de/citylog-projekt.

Google Scholar

[2] Gruber, J.: Elektro-Lastenräder für den klimafreundlichen Einsatz im Kuriermarkt, Institut für Verkehrsforschung Berlin-Adlershof (2015).

Google Scholar

[3] Müssig, J.: Schmehl, M.; von Buttlar, H. -B.; Schönfeld, U. & Arndt, K.: Exterior components based on renewable resources produced with SMC technology — considering a bus component as example. Industrial Crops and Products 24, 2 (2006).

DOI: 10.1016/j.indcrop.2006.03.006

Google Scholar

[4] A. Hedlund-Aström, Model for end of life treatment of polymer composite materials, Doctor Thesis (2005).

Google Scholar

[5] S. Goutianos, Textile reinforcements Based on Aligned Flax Fibres for Structural Composites (2003).

Google Scholar

[6] G. Coroller, Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite (2013).

DOI: 10.1016/j.compositesa.2013.03.018

Google Scholar

[7] B. Madsen, Hemp yarn reinforced composites – I. Yarn chraracteristics (2007).

Google Scholar

[8] I. Van de Weyenberg, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment (2006).

DOI: 10.1016/j.compositesa.2005.08.016

Google Scholar

[9] DIN EN ISO 14125: 2011-05. Faserverstärkte Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 14125: 1998 + Cor. 1: 2001 + Amd. 1: 2011); Deutsche Fassung EN ISO 14125: 1998 + AC: 2002 + A1: (2011).

DOI: 10.31030/1753441

Google Scholar

[10] DIN 53293: 1982-02. Prüfung von Kernverbunden: Biegeversuch.

DOI: 10.31030/1264624

Google Scholar

[11] DIN 53399-2: 1982-11. Prüfung von Faserverstärkten Kunststoffen; Schubversuch an ebenen Probekörpern.

DOI: 10.31030/1265729

Google Scholar

[12] H. Schürmann, Konstruieren mit Faser- Kunststoff- Verbunden, Springer (2007), ISBN-10: 3540721895.

DOI: 10.1007/978-3-540-72190-1

Google Scholar