Polypropylene Based Piezo Ceramic Compounds for Micro Injection Molded Sensors

Article Preview

Abstract:

Polymer matrix compounds based on piezo ceramic and electrically conducting particles within a thermoplastic matrix show distinctive piezoelectric and dielectric effects which can used for sensor applications. The electrical and mechanical properties can be adjusted in a wide range by varying the ratio of active filling particles and the matrix materials. The sensor effect of the compound is generated by the ceramic particles. A large ratio of piezo ceramic powder facilitates a high sensitivity. The electrical permittivity of the otherwise insulating matrix polymer can be adjusted by the amount of conductive filler. An aligned permittivity leads to a stronger electrical field in the ceramic particles. In contrast, too many conductive particles create a conductive network in the compound which short-circuits the sensors. The piezo ceramic compounds can be processed via micro injection molding for application as ceramic sensors. This offers a wide range of new sensor design variants, notably three-dimensional and highly complex geometries. However, there are two main demands for a highly sensitive sensor, which are conflicting. On the one hand the filler content of piezo ceramic particles in combination with electrical conductive carbon nanotubes must be very high, on the other hand the wall thickness should be as thin as possible. For filling cavities with a high aspect-ratio in an injection molding process, low viscosity polymer melts are necessary. These process characteristics conflict with the increasing viscosity by filling the melt with the particles. The sensor measuring area has to be designed as thin walled as possible. In order to overcome this obstacle a dynamically tempered mold design is applied to avoid solidification of the melt, before the mold is completely filled. The mold can be tempered by Peltier elements. The fully electric tempering is cleaner, more precise and more reliable than conventional water or oil tempering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

807-814

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kroll, W. Nendel, M. Heinrich, R. Stelzer, J. Tröltzsch, M. Walther, Valuation of process-induced initial stresses of micro injection moulded piezo-active hybrid modules, Journal of Plastics Technology 7 (1), pp.17-43, (2011).

DOI: 10.1007/978-3-642-17384-4_10

Google Scholar

[2] V. Kräusel, A. Graf, M. Heinrich, R. Decker, M. Caspar, L. Kroll, W. Hardt, A. Göschel, Development of hybrid assembled composites with sensory function, CIRP Annals - Manufacturing Technology 64 (1), pp.25-28.

DOI: 10.1016/j.cirp.2015.04.054

Google Scholar

[3] A. Donoso, O. Sigmund, Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads, Structural and Multidisciplinary Optimization 38 (2), pp.171-183, 2009, DOI: 10. 1007/s00158-008-0273-0.

DOI: 10.1007/s00158-008-0273-0

Google Scholar

[4] T.E. Gómez, F. Montero de Espinosa, F. Levassort, M. Lethiecq, A. James, E. Ringgård, C.E. Millar, P. Hawkins, Ceramic powder–polymer piezocomposites for electroacoustic transduction: modeling and design, Ultrasonics 36 (9), pp.907-923.

DOI: 10.1016/s0041-624x(98)00021-3

Google Scholar

[5] Z. Ounaies, C. Park, J. Harrison, P. Lillehei, Evidence of Piezoelectricity in SWNT-Polyimide and SWNT-PZT-Polyimide Composites, Journal of Thermoplastic Composite Materials 21 (5), pp.393-409, 2008, DOI: 10. 1177/0892705708089483.

DOI: 10.1177/0892705708089483

Google Scholar

[6] J. -H. Seol, J.S. Lee, H. -N. Ji, Y. -P. Ok, G.P. Kong, K. -S. Kim, C.Y. Kim, W. -P. Tai, Piezoelectric and dielectric properties of (K0. 44Na0. 52Li0. 04)(Nb0. 86Ta0. 10Sb0. 04)O3-PVDF composites, Ceramics International 38 (1), pp.263-266.

DOI: 10.1016/j.ceramint.2011.04.097

Google Scholar

[7] R. Schulze, M. Heinrich, P. Nossol, R. Forke, M. Sborikas, A. Tsapkolenko, D. Billep, M. Wegener, L. Kroll, T. Gessner, Piezoelectric P(VDF-TrFE) transducers assembled with micro injection molded polymers. Sensors and Actuators A: Physical 208, pp.159-165.

DOI: 10.1016/j.sna.2013.12.032

Google Scholar

[8] M. Heinrich, R. Decker, J. Schaufuß, J. Tröltzsch, J. Mehner, L. Kroll, Electrical contact properties of micro-injection molded Polypropylene/CNT/CB-composites on metallic electrodes, Advanced Materials Research 1103, pp.77-83.

DOI: 10.4028/www.scientific.net/amr.1103.77

Google Scholar

[9] D.J. Mickish, Effects of interfacial polarization and loading factor in dielectric-loss measurements of composites, Journal of Applied Physics 50, pp.5923-5929, 1979, DOI: 10. 1063/1. 326692.

DOI: 10.1063/1.326692

Google Scholar

[10] C. Doerffel, G. Jüttner, R. Dietze, Micro Test Specimens for Compound Engineering with Minimum Material Needs, Materials Science Forum, Vols. 825-826, pp.928-935, 2015, DOI: 10. 4028/www. scientific. net/MSF. 825-826. 928.

DOI: 10.4028/www.scientific.net/msf.825-826.928

Google Scholar

[11] A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Lichtenecker's equation: applicability and limitations, Optics Communications 174 (1-4), pp.19-32, 2000, DOI: 10. 1016/S0030-4018(99)00695-1.

DOI: 10.1016/s0030-4018(99)00695-1

Google Scholar

[12] D. Niedziela, J. Tröltzsch, A. Latz, L. Kroll, On the numerical simulation of molding processes with integrated textile fiber reinforcements, Journal of Thermoplastic Composite Materials 26 (1), pp.74-90, 2013, DOI: 10. 1177/0892705711419695.

DOI: 10.1177/0892705711419695

Google Scholar

[13] Th. Walther, W. Schinköthe, W. Ehrfeld; C. Schaumburg, L. Weber, Mikrospritzgießen mit induktiver Werkzeugtemperierung, 16. Stuttgarter Kunststoff-Kolloquium, 1999, ISBN 3-00-003720-9.

Google Scholar