[1]
A. Furukawa, T. Saitoh, S. Hirose, Convolution quadrature time-domain boundary element method for 2-D and 3-D elastodynamic analyses in general anisotropic elastic solids, Eng. Anal. Boundary. Elem. 39 (2014) 64-74.
DOI: 10.1016/j.enganabound.2013.11.006
Google Scholar
[2]
L. Gaul, M. Kogl, M. Wagner, Boundary Element Methods for Engineers and Scientists, Springer-Verlag Berlin Heidelberg, (2003).
Google Scholar
[3]
C.Y. Wang, J.D. Achenbach, Elastodynamic fundamental solution for anisotropic solids, Geophys. J. Int. 118 (1994) 384-392.
DOI: 10.1111/j.1365-246x.1994.tb03970.x
Google Scholar
[4]
C.Y. Wang, J.D. Achenbach, Three-dimensional time-harmonic elastodynamic Green's functions for anisotropic solids, Proc. R. Soc. A 449 (1995) 441-458.
DOI: 10.1098/rspa.1995.0052
Google Scholar
[5]
M. Dravinski, Y. Niu, Three-dimensional time-harmonic Green's functions for a triclinic full-space using a symbolic computation system, Int. J. Numer. Meth. Eng. 53 (2002) 455-472.
DOI: 10.1002/nme.292
Google Scholar
[6]
X. Zhao, An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate, Int. J. Solids. Struct. 41 (2004) 3653-3674.
DOI: 10.1016/j.ijsolstr.2004.01.006
Google Scholar
[7]
V.G. Bazhenov, L.A. Igumnov, Boundary Integral Equations & Boundary Element Methods in treating the problems of 3D elastodynamics with coupled fields, Fizmatlit, Moscow, 2008 (in Russian).
Google Scholar
[8]
S. Roy, J. -M. Gebert, G. Stasiuk, R. Piat, K.A. Weidenmann, A. Wanner, Complete determination of elastic moduli of interpenetrating metal/ceramic composites using ultrasonic techniques and micromechanical modelling, Mater. Sci. Eng. A-Struct. 528 (2011).
DOI: 10.1016/j.msea.2011.07.029
Google Scholar