Influence of the Sheet Metal Anisotropy on Polythickness of the Skin after Stretch Forming

Article Preview

Abstract:

Computer simulation of the stretch forming process of the with different anisotropy of properties in the software package PAM-STAMP 2G was implemented in the work. The design of the multivariate experiment was made to analyze the effect of the anisotropy of the mechanical properties over the final polythickness of the skin after stretch forming. The regression analysis of the results was implemented after simulation, besides a mathematical model of polythickness dependence on the anisotropy of the properties was formulated. The optimal combination of Lankford coefficients, ultimate strength, yield strength and uniform elongation that minimizes polythickness of the finished skin was established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-211

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dem'yanenko E.G. A technique of shaping the barrel-type parts / E.G. Dem'yanenko / (2014) Russian Aeronautics, 57 (2), pp.204-211.

Google Scholar

[2] Erisov Y.A., Grechnikov F.V., Surudin S.V. Yield function of the orthotropic material considering the crystallographic texture / Structural Engineering and Mechanics. 2016. Vol. 58. Issue 4. PP. 677-687.

DOI: 10.12989/sem.2016.58.4.677

Google Scholar

[3] Park, J. -W. Study on multiple die stretch forming for curved surface of sheet metal / J. -W. Park, J. Kim, B. -S. Kang / International Journal of Precision Engineering and Manufacturing – 2014. – Volume 15, Issue 11. – p.2429–2436.

DOI: 10.1007/s12541-014-0610-8

Google Scholar

[4] Seo, Y. -H.  Study on relationship between design parameters and formability in flexible stretch forming process / Y. -H. Seo, B. -S. Kang, J. Kim. / International Journal of Precision Engineering and Manufacturing. – 2012 – 13(10). – p.1797–1804.

DOI: 10.1007/s12541-012-0236-7

Google Scholar

[5] Wang, S. Numerical simulation on the local stress and local deformation in multi-point stretch forming process / Z. Cai, M. Li, Y. Lan / International Journal of Advanced Manufacturing Technology. – 2012. – 60 (9–12). – p.901–911.

DOI: 10.1007/s00170-011-3663-1

Google Scholar

[6] Liu, W. Numerical simulation of multi-point stretch forming and controlling on accuracy of formed workpiece  / Y. -Y. Yang,  M. -Z. Li / International Journal of Advanced Manufacturing Technology. – 2010. – 50 (1–4). – p.61–66.

DOI: 10.1007/s00170-009-2501-1

Google Scholar

[7] Chen, X. Numerical simulation of different clamping modes on stretch forming parts / M.Z. Li, W.Z. Fu, Z.Y. Cai / Advanced Materials Research. –2011. №189–193, p.1922–(1925).

DOI: 10.4028/www.scientific.net/amr.189-193.1922

Google Scholar

[8] Cai, Z. -Y., Yang, Z., Che, C. -J., Li, M. -Z. Minimum deformation path sheet metal stretch-forming based on loading at discrete points / International Journal of Advanced Manufacturing Technology, 1 April 2016, pp.1-10.

DOI: 10.1007/s00170-016-8641-1

Google Scholar

[9] Mikheev V.A. Statistical analysis of stretch shaping process of biconvex skin / S.D. Smol'nikov, S.V. Surudin, D.V. Savin / Russian Aeronautics. 2016. No.V. 59, Iss. 1.P. 145-150.

DOI: 10.3103/s1068799816010232

Google Scholar

[10] Mikheev V.A. Improving the Processes of Formation of Shells Wrapped With a Double Curvature / V.A. Mikheev, A.F. Grechnikova, A.A. Kuzina / Proceedings of the Samara Scientific Center RAN. 2011. t. 13. №4 (42). Pp 217-224.

Google Scholar

[11] Hill R. The Mathematical Theory of Plasticity, Oxford, Clarendon Press, (1950).

Google Scholar

[12] Gronostajski Z. The Constitutive Equations for FEM Analysis, Journal of Materials Processing Technology. 2000, vol. 106, pp.40-44.

DOI: 10.1016/s0924-0136(00)00635-x

Google Scholar