The Implementation of Algorithm Iterative Conversion for Three-Component Composite on the Example of Solution of the Bending Plate Problem

Article Preview

Abstract:

Applications of the new algorithm for the calculation of stress-strain state of multicomponent isotropic bodies are given in the article. The algorithm is based on the derivation of expressions for iterated effective modules obtained by converting the Voigt-Reuss modules. The comparison of exact solution with the solutions based on new characteristics obtained for the problem of loading a round sandwich plate is given as the example.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-216

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Kupriyanov, F. A. Simankin, K. K. Manabaev, New effective moduli of isotropic viscoelastic composites. Part II. Comparison of approximate calculation with the analytical solution, Mat. Sci. and Eng. (2000) vol. 124 (IOP Publishing) 012100.

DOI: 10.1088/1757-899x/124/1/012100

Google Scholar

[2] A. Rasool, H. J. Böhm, Effects of particle shape on the macroscopic and mocroscopic linear behaviors of particle reinforced composites, Int. J. Engng. Sci. 58 (2012) 21 – 34.

DOI: 10.1016/j.ijengsci.2012.03.022

Google Scholar

[3] B. Klusemann, H. J. Böhm, B. Svendsen, Homogenization methods for multi-phase elastic composites of non-ellipsoidal shape: Comparisons and benchmarks, Eur. J. Mech. A. Solids. 38 (2012) 21 – 37.

DOI: 10.1016/j.euromechsol.2011.12.002

Google Scholar

[4] T.D. Shermergor, Elasticity Theory microinhomogeneous media, Nauka, Moscow, (1977).

Google Scholar

[5] D. Sendetski, The elastic properties of composites, MIR, Moscow, (1978).

Google Scholar

[6] R. M. Christensen, Mechanics of Composite Materials, AcademicPress, NewYork, (1979).

Google Scholar

[7] Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. 29 (1962) 143-150.

Google Scholar

[8] R. Hill, Self – consistent mechanics of composite materials, J. Mech. Phys. Solids. 13 (1965) 11-19.

Google Scholar

[9] I-Kan An, Ilin A S and Lazurkevich A V IOP Conf. Ser.: Mat. Sci. and Eng. (2016) vol. 124 (IOP Publishing) 012003.

Google Scholar

[10] I-Kan An, Ilin A S and Lazurkevich A V IOP Conf. Ser.: Mat. Sci. and Eng. (Tomsk) vol. 124 (IOP Publishing) 012004.

Google Scholar

[11] A. A. Svetashkov, A. A. Vakurov, New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification, IOP Conf. Ser.: Mat. Sci. and Eng (2016) vol. 124 (IOP Publishing) 012099.

DOI: 10.1088/1757-899x/124/1/012099

Google Scholar

[12] V. G. Zverev, V. D. Goldin, A. A. Svetashkov, Thermal destruction of vessels with liquid upon heating, IOP Conf. Ser.: Mat. Sci. and Eng (2016) vol. 124 (IOP Publishing) 012108.

DOI: 10.1088/1757-899x/124/1/012108

Google Scholar

[13] S. M. Pavlov, A. A. Svetashkov, Iteration method for solving linear viscoelasticity problems , Russ. Phys. J. 36 (1993) 400-406.

DOI: 10.1007/bf00570749

Google Scholar

[14] A.A. Svetashkov, Time-effective moduli of a linear viscoelastic body, Mechanics of Composite Materials. 36 (2000 ) 37-44.

DOI: 10.1007/bf02681774

Google Scholar