Recycling Red Mud of JSC Ural Aluminum Plant with the Recovery of Iron and Construction Materials

Article Preview

Abstract:

Red mud is a by-product of alumina industry which is currently almost completely stored in landfill sites without further use. It contains considerable amounts of valuable components such as iron, aluminum, titanium and rare-earth metals. The reduction smelting of red mud was carried out in laboratory scale to recover iron and obtain slag suitable for use in the construction industry. It has been shown that it is expedient to obtain pig iron and slag from the unprocessed red mud. Those two are suitable for the subsequent leaching of aluminum, titanium and rare-earth metals. It is practical to process dealkalized red mud, with composition adjustment by CaO and Al2O3 addition, in order to obtain pig iron and slag in the form of aluminous clinker.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-337

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Zhang, S. Zheng, S. Ma, et al., Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process, Journal of Hazardous Materials 189 (2011) 827-835.

DOI: 10.1016/j.jhazmat.2011.03.004

Google Scholar

[2] W. Wang, Y. Pranolo, C.Y. Cheng, Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA, Separation and Purification Technology 108 (2013) 96-102.

DOI: 10.1016/j.seppur.2013.02.001

Google Scholar

[3] M. Gräfe, G. Power, C. Klauber, Bauxite residue issues: III alkalinity and associated chemistry, Hydrometallurgy 108 (2011) 60-79.

DOI: 10.1016/j.hydromet.2011.02.004

Google Scholar

[4] K. Binnemans, P.T. Jones, B. Blanpain, et al., Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, Journal of Cleaner Production 99 (2015) 17-38.

DOI: 10.1016/j.jclepro.2015.02.089

Google Scholar

[5] C.K. Gupta, N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press, Boca Raton, (2004).

Google Scholar

[6] W. Liu, J. Yang, B. Xiao, Review on treatment and utilization of bauxite residues in China, International Journal of Mineral Processing 93 (2009) 220-231.

DOI: 10.1016/j.minpro.2009.08.005

Google Scholar

[7] H. Sutar, S.C. Mishra, S.K. Sahoo, et al., Progress of Red Mud Utilization: An Overview, American Chemical Science Journal 4 (2014) 255-279.

DOI: 10.9734/acsj/2014/7258

Google Scholar

[8] G. Power, M. Gräfe, C. Klauber, Bauxite residue issues: II options for residue utilization, Hydrometallurgy 108 (2011) 11-32.

DOI: 10.1016/j.hydromet.2011.02.007

Google Scholar

[9] R.K. Paramguru, P.C. Rath, V.N. Misra, Trends in red mud utilization – a review, Mineral Processing and Extractive Metallurgy Review 26 (2004) 1-29.

DOI: 10.1080/08827500490477603

Google Scholar

[10] Y. Liu, R. Naidu, Hidden values in bauxite residue (red mud): Recovery of metals, Waste Management 34 (2014) 2662-2673.

DOI: 10.1016/j.wasman.2014.09.003

Google Scholar

[11] V. Ya. Miller, A.I. Ivanov, Kharakteristika i puti kompleksnogo ispolzovaniya krasnykh shlamov [Characteristics and ways of integrated use of red mud], in: Trudy Instituta Metallurgii UFAN SSSR [Proceedings of Institute of Metallurgy, Ural Division Academy of Sciences of the USSR], Sverdlovsk, 1958, iss. 2, p.2.

Google Scholar

[12] O.A. Arkhipov, Tekhnologicheskaya skhema kompleksnoy pererabotki krasnykh shlamov Uralskogo alyuminievogo zavoda [The technological scheme of complex processing of red mud in Ural aluminum plant], in: Trudy Soveshchaniya po kompleksnomu ispolzovaniyu rudnogo syriya Urala [Proceedings of Conference on the integrated use of Ural ore raw materials], Sverdlovsk, 1964, pp.245-248.

Google Scholar

[13] C.R. Borra, B. Blanpain, Y. Pontikes, et al., Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery, Journal of Sustainable Metallurgy 2 (2016), 28-37.

DOI: 10.1007/s40831-015-0026-4

Google Scholar

[14] D.V. Valeev, Y.A. Lainer, A.B. Mikhailova, et. Al., Reaction of Bauxite with Hydrochloric Acid Under Autoclave Conditions, Metallurgist 60 (2016) 204-211.

DOI: 10.1007/s11015-016-0274-y

Google Scholar

[15] D.V. Valeev, Y.A. Lainer, V.I. Pak, Autoclave leaching of boehmite-kaolinite bauxites by hydrochloric acid, Inorganic Materials: Applied Research 7 (2016) 272-277.

DOI: 10.1134/s207511331602026x

Google Scholar

[16] D.V. Valeev, E.R. Mansurova, V.A. Bychinskii, et. al., Extraction of Alumina from high-silica bauxite by hydrochloric acid leaching using preliminary roasting method, IOP Conference Series: Materials Science and Engineering 110 (2016) 012049.

DOI: 10.1088/1757-899x/110/1/012049

Google Scholar

[17] L.I. Leontiev, I.A. Vatolin, S.V. Shavrin, I.S. Shumakov, Pirometallurgicheskaya pererabotka kompleksnykh rud [Pyrometallurgical processing of complex ores], Metallurgiya, Moscow, 1997. (in Russian).

Google Scholar

[18] E. Balomnenos, D. Kastritis, D. Panias, et al., The Enexal Bauxite Residue Treatment Process: Industrial Scale Pilot Plant Results, in: J. Grandfield (Ed. ) Light Metals 2014, John Wiley & Sons Inc., Hoboken, New Jersey, 2014, pp.143-147.

DOI: 10.1002/9781118888438.ch25

Google Scholar

[19] W. Liu, J. Yang, B. Xiao, et al., Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, Journal of Hazardous Materials 161 (2009) 474-478.

DOI: 10.1016/j.jhazmat.2008.03.122

Google Scholar

[20] R.M. Enick, E.J. Beckman, C. Shi, J. Xu, Remediation of metal-bearing aqueous waste streams via direct carbonation, Energy Fuels 15 (2001) 256-262.

DOI: 10.1021/ef000245x

Google Scholar

[21] C. Brunori, C. Crmisini, P. Massanisso, V. Pinto, L. Torricelli, Reuse of treated red bauxite waste: studies on environmental compatibility, Journal of Hazardous Materials B117 (2005) 55-63.

DOI: 10.1016/j.jhazmat.2004.09.010

Google Scholar

[22] E.V. Shiryaeva, G.S. Podgorodetskii, T. Ya. Malysheva, et al., Effects of adding low-alkali red mud to the sintering batch at OAO Ural'skaya Stal', Steel in Translation 44 (2014) 6-10.

DOI: 10.3103/s0967091214010173

Google Scholar

[23] L.Z. Khodak, I.I. Gultiay, G.I. Zhmoydin, G.A. Panasko, Shlakovyy rezhim domennoy plavki vysokoglinozyomistogo syriya [Slag adjustment of blast furnace smelting with high-alumina raw materials], in: Shlakovyy rezhim domennykh pechey [Slag adjustment in blast furnace], Metallurgiya, Moscow, 1967, pp.121-134.

DOI: 10.1007/978-981-19-3288-5_3

Google Scholar

[24] G.E. Bye, Portlandcement. Composistion, production and properties, second ed., Thomas Telford, London, (1999).

Google Scholar

[25] E. Erçaĝ, R. Apak, Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron, Journal of Chemical Technology and Biotechnology 70 (1997), 241-246.

DOI: 10.1002/(sici)1097-4660(199711)70:3<241::aid-jctb769>3.0.co;2-x

Google Scholar

[26] Information on http: /conference2015. redmud. org/wp-content/uploads/2015/10/Frank-KAUSSEN-2-secure. pdf.

Google Scholar

[27] D.V. Zinoveev, V.G. Dyubanov, A.V. Shutova, et al., Recycling of Red Muds with the Extraction of Metals and Special Additions to Cement, Russian Metallurgy (Metally) 1 (2015) 19-21.

DOI: 10.1134/s0036029515010164

Google Scholar