[1]
R. Zhang, S. Zheng, S. Ma, et al., Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process, Journal of Hazardous Materials 189 (2011) 827-835.
DOI: 10.1016/j.jhazmat.2011.03.004
Google Scholar
[2]
W. Wang, Y. Pranolo, C.Y. Cheng, Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA, Separation and Purification Technology 108 (2013) 96-102.
DOI: 10.1016/j.seppur.2013.02.001
Google Scholar
[3]
M. Gräfe, G. Power, C. Klauber, Bauxite residue issues: III alkalinity and associated chemistry, Hydrometallurgy 108 (2011) 60-79.
DOI: 10.1016/j.hydromet.2011.02.004
Google Scholar
[4]
K. Binnemans, P.T. Jones, B. Blanpain, et al., Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, Journal of Cleaner Production 99 (2015) 17-38.
DOI: 10.1016/j.jclepro.2015.02.089
Google Scholar
[5]
C.K. Gupta, N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press, Boca Raton, (2004).
Google Scholar
[6]
W. Liu, J. Yang, B. Xiao, Review on treatment and utilization of bauxite residues in China, International Journal of Mineral Processing 93 (2009) 220-231.
DOI: 10.1016/j.minpro.2009.08.005
Google Scholar
[7]
H. Sutar, S.C. Mishra, S.K. Sahoo, et al., Progress of Red Mud Utilization: An Overview, American Chemical Science Journal 4 (2014) 255-279.
DOI: 10.9734/acsj/2014/7258
Google Scholar
[8]
G. Power, M. Gräfe, C. Klauber, Bauxite residue issues: II options for residue utilization, Hydrometallurgy 108 (2011) 11-32.
DOI: 10.1016/j.hydromet.2011.02.007
Google Scholar
[9]
R.K. Paramguru, P.C. Rath, V.N. Misra, Trends in red mud utilization – a review, Mineral Processing and Extractive Metallurgy Review 26 (2004) 1-29.
DOI: 10.1080/08827500490477603
Google Scholar
[10]
Y. Liu, R. Naidu, Hidden values in bauxite residue (red mud): Recovery of metals, Waste Management 34 (2014) 2662-2673.
DOI: 10.1016/j.wasman.2014.09.003
Google Scholar
[11]
V. Ya. Miller, A.I. Ivanov, Kharakteristika i puti kompleksnogo ispolzovaniya krasnykh shlamov [Characteristics and ways of integrated use of red mud], in: Trudy Instituta Metallurgii UFAN SSSR [Proceedings of Institute of Metallurgy, Ural Division Academy of Sciences of the USSR], Sverdlovsk, 1958, iss. 2, p.2.
Google Scholar
[12]
O.A. Arkhipov, Tekhnologicheskaya skhema kompleksnoy pererabotki krasnykh shlamov Uralskogo alyuminievogo zavoda [The technological scheme of complex processing of red mud in Ural aluminum plant], in: Trudy Soveshchaniya po kompleksnomu ispolzovaniyu rudnogo syriya Urala [Proceedings of Conference on the integrated use of Ural ore raw materials], Sverdlovsk, 1964, pp.245-248.
Google Scholar
[13]
C.R. Borra, B. Blanpain, Y. Pontikes, et al., Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery, Journal of Sustainable Metallurgy 2 (2016), 28-37.
DOI: 10.1007/s40831-015-0026-4
Google Scholar
[14]
D.V. Valeev, Y.A. Lainer, A.B. Mikhailova, et. Al., Reaction of Bauxite with Hydrochloric Acid Under Autoclave Conditions, Metallurgist 60 (2016) 204-211.
DOI: 10.1007/s11015-016-0274-y
Google Scholar
[15]
D.V. Valeev, Y.A. Lainer, V.I. Pak, Autoclave leaching of boehmite-kaolinite bauxites by hydrochloric acid, Inorganic Materials: Applied Research 7 (2016) 272-277.
DOI: 10.1134/s207511331602026x
Google Scholar
[16]
D.V. Valeev, E.R. Mansurova, V.A. Bychinskii, et. al., Extraction of Alumina from high-silica bauxite by hydrochloric acid leaching using preliminary roasting method, IOP Conference Series: Materials Science and Engineering 110 (2016) 012049.
DOI: 10.1088/1757-899x/110/1/012049
Google Scholar
[17]
L.I. Leontiev, I.A. Vatolin, S.V. Shavrin, I.S. Shumakov, Pirometallurgicheskaya pererabotka kompleksnykh rud [Pyrometallurgical processing of complex ores], Metallurgiya, Moscow, 1997. (in Russian).
Google Scholar
[18]
E. Balomnenos, D. Kastritis, D. Panias, et al., The Enexal Bauxite Residue Treatment Process: Industrial Scale Pilot Plant Results, in: J. Grandfield (Ed. ) Light Metals 2014, John Wiley & Sons Inc., Hoboken, New Jersey, 2014, pp.143-147.
DOI: 10.1002/9781118888438.ch25
Google Scholar
[19]
W. Liu, J. Yang, B. Xiao, et al., Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, Journal of Hazardous Materials 161 (2009) 474-478.
DOI: 10.1016/j.jhazmat.2008.03.122
Google Scholar
[20]
R.M. Enick, E.J. Beckman, C. Shi, J. Xu, Remediation of metal-bearing aqueous waste streams via direct carbonation, Energy Fuels 15 (2001) 256-262.
DOI: 10.1021/ef000245x
Google Scholar
[21]
C. Brunori, C. Crmisini, P. Massanisso, V. Pinto, L. Torricelli, Reuse of treated red bauxite waste: studies on environmental compatibility, Journal of Hazardous Materials B117 (2005) 55-63.
DOI: 10.1016/j.jhazmat.2004.09.010
Google Scholar
[22]
E.V. Shiryaeva, G.S. Podgorodetskii, T. Ya. Malysheva, et al., Effects of adding low-alkali red mud to the sintering batch at OAO Ural'skaya Stal', Steel in Translation 44 (2014) 6-10.
DOI: 10.3103/s0967091214010173
Google Scholar
[23]
L.Z. Khodak, I.I. Gultiay, G.I. Zhmoydin, G.A. Panasko, Shlakovyy rezhim domennoy plavki vysokoglinozyomistogo syriya [Slag adjustment of blast furnace smelting with high-alumina raw materials], in: Shlakovyy rezhim domennykh pechey [Slag adjustment in blast furnace], Metallurgiya, Moscow, 1967, pp.121-134.
DOI: 10.1007/978-981-19-3288-5_3
Google Scholar
[24]
G.E. Bye, Portlandcement. Composistion, production and properties, second ed., Thomas Telford, London, (1999).
Google Scholar
[25]
E. Erçaĝ, R. Apak, Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron, Journal of Chemical Technology and Biotechnology 70 (1997), 241-246.
DOI: 10.1002/(sici)1097-4660(199711)70:3<241::aid-jctb769>3.0.co;2-x
Google Scholar
[26]
Information on http: /conference2015. redmud. org/wp-content/uploads/2015/10/Frank-KAUSSEN-2-secure. pdf.
Google Scholar
[27]
D.V. Zinoveev, V.G. Dyubanov, A.V. Shutova, et al., Recycling of Red Muds with the Extraction of Metals and Special Additions to Cement, Russian Metallurgy (Metally) 1 (2015) 19-21.
DOI: 10.1134/s0036029515010164
Google Scholar