[1]
A.I. Brusilovskij, Fazovye prevrashhenija pri razrabotke mestorozhdenij nefti i gaza [Phase transitions in the development of oil and gas fields], Graal', Moskow, (2002).
Google Scholar
[2]
A.A. Khamukhin, E.V. Nikolayev, Numerical Simulation of Gas Evolution from Oil-in-Water Flow for Multistage Separation, Key Engineering Materials, 685 (2016) 257-261.
DOI: 10.4028/www.scientific.net/kem.685.257
Google Scholar
[3]
A.A. Khamukhin, E.V. Nikolayev, Modeling of Gas Multistage Separation to Increase Stock Tank Oil, Advanced Materials Research, 1040 (2014) 508-512.
DOI: 10.4028/www.scientific.net/amr.1040.508
Google Scholar
[4]
E.V. Nikolayev, S.N. Kharlamov, Detailed Modelling of Hydrocarbonaceous Media Separation Process, Applied Mechanics and Materials, 835 (2016) 315-320.
DOI: 10.4028/www.scientific.net/amm.835.315
Google Scholar
[5]
E.V. Nikolayev, S.N. Kharlamov, Research of multicomponent hydrocarbon systems separation in modes of functioning of oil preliminary preparation equipment, Bulletin of Tomsk Polytechnic University. Geo Assets Engineering, 7 (327) (2016) 84-99.
Google Scholar
[6]
O.W. Kylling, Optimizing separator pressure in a multistage crude oil production plan: dis. Master of Science in Eng. Cybernetic, Norw. Univ. of Science and Technol. (2009).
Google Scholar
[7]
S.A. Leontiev, A.N. Marchenko, O.V. Fominykh, Basis of Preparation of Technological Parameters of Rational Production Borehole Field Vyngapurovskoe, Electronic Scientific Journal Neftegazovoe delo, 3 (2012) 211-221.
Google Scholar
[8]
Mahsakazemi, Optimization of Oil and Gas Multi Stage Separators Pressure to Increase Stock Tank Oil, Oriental J. of Chemistry, 4 (27) (2011) 1503-1508.
Google Scholar
[9]
Aspen HYSYS. User Guide. Version 2006, AspenTechnology Inc., (2006).
Google Scholar
[10]
Aspen HYSYS. Basis. Version 2006, AspenTechnology Inc., (2006).
Google Scholar
[11]
D.Y. Peng, D.B. Robinson, A new two–constant equation of state, Ind. Eng. Chem. Fundam. 15 (1976) 59-64.
Google Scholar
[12]
J. Kou, S. Sun, Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions, Journal of Computational and Applied Mathematics, 291 (2016) 158-182.
DOI: 10.1016/j.cam.2015.02.037
Google Scholar
[13]
V.I. Falovsky, A.S. Khoroshev, V.G. Shakhov, The modern approach to phase-behavior predictions of hydrocarbon systems by means of the Peng-Robinson equation of state, Joint stock company Giprovostokneft, Samara State Aerospace University, 3 (2011).
Google Scholar
[14]
V.S. Kulik, A.M. Chionov, S.A. Korshunov, K.A. Kazak, A.S. Kazak, Ispol'zovanie razlichnyh uravnenij sostojanija dlja rascheta ravnovesija v sistemah par–zhidkost'" pod vysokim davleniem [The using of the various equations of state for systems "steam-liquid, under high pressure equilibrium calculation], Truboprovodnij transport: teoriya i praktika, 3 (2013).
Google Scholar
[15]
J.O. Hirshfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York, (1954).
Google Scholar
[16]
P.D. Neufeld, A.R. Janzen, R.A. Aziz, Empirical equations to calculate 16 of the transport collision integrals for the Lennard-Jones (12-6) potential, J. Chem. Phys., 57 (1972) 1100-1102.
DOI: 10.1063/1.1678363
Google Scholar
[17]
F.A. Vil'jams, Teorija gorenija [Combustion Theory], Nauka, Moskow, (1971).
Google Scholar
[18]
V.B. Kogan, Teoreticheskie osnovy tipovyh processov himicheskoj tehnologii [Theoretical foundations of chemical engineering unit operations], Himija, Leningrad, (1977).
Google Scholar
[19]
V.M. Potehin, V.V. Potehin, Osnovy teorii himicheskih processov tehnologii organicheskih veshchestv i neftepererabotki [Foundations of the chemical processes theory of organic matter and petroleum technology], Himizdat, Saint Petersburg, (2007).
Google Scholar