Numerical Simulation of Flow Distribution in the Packed Bed Reactor with the Supply Nozzle Placed on the Sidewall

Article Preview

Abstract:

Flow distribution is an important process step of many technologies such as heating or cooling systems, microchannel reactors, bubble columns and fixed- or fluidized-bed reactors etc. The present work is devoted to numerical simulation of flow distribution in the pre-reactor unit of the packed bed reactor used for filtrating combustion of fuel mixtures. A special modification of the construction is considered namely the construction with a nozzle for fuel mixture supply placed on the sidewall of the apparatus. The problem formulation, the best practices and opportunities of numerical simulation of the flow distribution effect in packed bed reactors are discussed in the present paper. The length of the flow distribution zone in a wide range of mixture inlet velocity is calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-388

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Afshari, N. Baharlou Houreh, Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system, Energy Convers. Manage. 88 (2014) 612-621.

DOI: 10.1016/j.enconman.2014.08.067

Google Scholar

[2] B. Ramos-Alvarado, A. Hernandez-Guerrero, D. Juarez-Robles, P. Li, Numerical investigation of the performance of symmetric flow distributors as flow channels for PEM fuel cells, Int. J. Hydrogen Energy 37 (1) (2012) 436-448.

DOI: 10.1016/j.ijhydene.2011.09.080

Google Scholar

[3] C. -J. Tseng, B.T. Tsai, Z. -S. Liu, T. -C. Cheng, W. -C. Chang, S. -K. Lo, A PEM fuel cell with metal foam as flow distributor, Energy Convers. Manage. 62 (2012) 14-21.

DOI: 10.1016/j.enconman.2012.03.018

Google Scholar

[4] M.K. Choi, Y.B. Lim, H.W. Lee, H. Jung, J.W. Lee, Flow uniformizing distribution panel design based on a non-uniform porosity distribution, J. Wind Eng. Ind. Aerodyn. 130 (2014) 41-47.

DOI: 10.1016/j.jweia.2014.04.003

Google Scholar

[5] A. Shukrie, S. Anuar, A. Alias, Heat transfer of alumina sands in fluidized bed combustor with novel circular edge segments air distributor, Energy Procedia 75 (2015) 1752-1757.

DOI: 10.1016/j.egypro.2015.07.453

Google Scholar

[6] W. Guojiang, T. Song, CFD simulation of the effect of upstream flow distribution on the light-off performance of a catalytic converter, Energy Convers. Manage. 46 (13–14) (2005) 2010-(2031).

DOI: 10.1016/j.enconman.2004.11.001

Google Scholar

[7] G. Agrawal, N.S. Kaisare, S. Pushpavanam, K. Ramanathan, Modeling the effect of flow mal-distribution on the performance of a catalytic converter, Chem. Eng. Sci. 71 (2012) 310-320.

DOI: 10.1016/j.ces.2011.12.041

Google Scholar

[8] S. Sharaf, M. Zednikova, M.C. Ruzicka, B.J. Azzopardi, Global and local hydrodynamics of bubble columns – Effect of gas distributor, Chem. Eng. J. 288 (2016) 489-504.

DOI: 10.1016/j.cej.2015.11.106

Google Scholar

[9] L. Luo, Z. Fan, H. Le Gall, X. Zhou, W. Yuan, Experimental study of constructal distributor for flow equidistribution in a mini crossflow heat exchanger (MCHE), Chem. Eng. Process.: Process Intensif. 47 (2) (2008) 229-236.

DOI: 10.1016/j.cep.2007.02.028

Google Scholar

[10] Z. Fan, X. Zhou, L. Luo, W. Yuan, Numerical investigation of constructal distributors with different configurations, Chin. J. Chem. Eng. 17 (1) (2009) 175–178.

DOI: 10.1016/s1004-9541(09)60052-5

Google Scholar

[11] M.A. Mujeebu, M.Z. Abdullah, M.Z.A. Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology – A review, Appl. Energy 86 (9) (2009) 1365-1375.

DOI: 10.1016/j.apenergy.2009.01.017

Google Scholar

[12] M.G. Toledo, K.S. Utria, F.A. González, J.P. Zuñiga, A.V. Saveliev, Hybrid filtration combustion of natural gas and coal, Int. J. Hydrogen Energy, 37 (8) (2012) 6942–6948.

DOI: 10.1016/j.ijhydene.2012.01.061

Google Scholar

[13] J. Shi, M. Xie, Z. Xue, Y. Xu, H. Liu Experimental and numerical studies on inclined flame evolution in packing bed, Int. J. Heat Mass Transfer 55 (23–24) (2012) 7063–7071.

DOI: 10.1016/j.ijheatmasstransfer.2012.07.020

Google Scholar

[14] V.G. Prokof 'ev, A.G. Kirdyashkin, V.G. Salamatov, V.K. Smolyakov, Unsteady combustion of gases in an inert porous layer, Combust. Explos. Shock Waves 46 (6) (2010) 641–646.

DOI: 10.1007/s10573-010-0084-7

Google Scholar

[15] H.B. Gao, Z.G. Qu, X.B. Feng, Methane/air premixed combustion in a two-layer porous burner with different foam materials, Fuel 115 (2014) 154–161.

DOI: 10.1016/j.fuel.2013.06.023

Google Scholar

[16] K. Araus, F. Reyes, M. Toledo, Syngas production from wood pellet using filtration combustion of lean natural gas–air mixtures, Int. J. Hydrogen Energy 39 (15) (2014) 7819-7825.

DOI: 10.1016/j.ijhydene.2014.03.140

Google Scholar

[17] H. Weltens, H. Bressler, F. Terres, H. Neumaier, D. Rammoser, Optimisation of catalytic converter gas flow distribution by CFD prediction, SAE Technical Paper 930780 (1993).

DOI: 10.4271/930780

Google Scholar

[18] M. Kaviany, Principles of heat transfer in porous media, 2nd ed., Springer, New York, (1995).

Google Scholar

[19] S. Ergun, Fluid Flow through Packed Columns, Chem. Eng. Prog. 48 (2) (1952) 89–94.

Google Scholar

[20] S.V. Patankar, Numerical heat transfer and fluid flow, 1st ed., Hemisphere Publishing Corporation, Philadelphia, (1980).

Google Scholar

[21] ANSYS Fluent Theory Guide, SAS IP Inc., (2013).

Google Scholar

[22] N. Wakao, S. Kaguei, Heat and mass transfer in packed beds, Gordon and Breach Science Publications, New York, (1982).

Google Scholar