[1]
P. E. Luis, O. Jose, P. Christine, A review on buildings energy consumption information, Energ. Build. 40 (2008) 394-398.
Google Scholar
[2]
L. Yang, J. C. Lam, J. P. Liu, Analysis of typical meteorological years in different climates of China, Energ. Con. Manag. 48 (2007) 654-668.
DOI: 10.1016/j.enconman.2006.05.016
Google Scholar
[3]
H. Asan, Y. S. Sancaktar, Effects of wall's thermophysical properties on time lag and decrement factor, Energ. Build. 28 (1998) 159-166.
DOI: 10.1016/s0378-7788(98)00007-3
Google Scholar
[4]
K. H. Lee, J. E. Braun, Model based demand limiting control of building thermal mass, Build. Env. 43 (2008) 1633-1646.
DOI: 10.1016/j.buildenv.2007.10.009
Google Scholar
[5]
R. A. Talyor, M. Miner, A metric for characterizing the effectiveness of thermal mass in building materials, Appl. Energ. 128 (2014) 156-163.
Google Scholar
[6]
R. Cheng, P. Pomianowski, X. Wang, et al. , A new method to determine thermal-physical properties of PCM-concrete brick, Appl. Energ. 112 (2013) 988-998.
DOI: 10.1016/j.apenergy.2013.01.046
Google Scholar
[7]
B. Zalba, J. M. Marin, L. F. Cabeza, et al. Review on thermal energy storage with phase change materials: heat transfer analysis and applications, Appl. Therm. Eng. 23 (2003) 251-283.
DOI: 10.1016/s1359-4311(02)00192-8
Google Scholar
[8]
A. Sharma, V. V. Tyagi, C. R. Chen, et al. Review on thermal energy storage with phase change materials and applications, Renew. Sus. Energ. Rev. 13 (2009) 318-345.
Google Scholar
[9]
F. Pitié, C. Y. Zhao, J. Baeyens, et al. Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles, Appl. Energ. 109 (2013) 505-513.
DOI: 10.1016/j.apenergy.2012.12.048
Google Scholar
[10]
Y. Zhang, X. Wang, Y. P. Zhang, et al. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system, Energy 114 (2016) 885-894.
DOI: 10.1016/j.energy.2016.08.062
Google Scholar
[11]
W. Xiao, X. Wang, Y. P. Zhang, Analytical optimization of interior PCM for energy storage in a lightweight passive solar room, Appl. Energ. 86 (2009) 2013-(2018).
DOI: 10.1016/j.apenergy.2008.12.011
Google Scholar
[12]
P. Moreno, A. Caste, C. Sole, et al. PCM thermal energy storage tanks in heat pump system for space cooling, Energ. Build. 82 (2014) 399-405.
DOI: 10.1016/j.enbuild.2014.07.044
Google Scholar
[13]
H. L. Zhang, J. Baeyens, J. Degreve, et al. Latent heat storage with tubular encapsulated phase change materials (PCMs), Energy, 76 (2014) 66-72.
DOI: 10.1016/j.energy.2014.03.067
Google Scholar
[14]
G. B. Zhou, Y. P. Yang, H. Xu, Energy performance of a hybrid space cooling system in an office building using SSPCM thermal storage and night ventilation, Sol. Energ. 85 (2011) 477-485.
DOI: 10.1016/j.solener.2010.12.028
Google Scholar
[15]
A. Real, V. Garcia, L. Domenech, et al, Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation, Energ. Build. 83 (2014) 108-116.
DOI: 10.1016/j.enbuild.2014.04.029
Google Scholar
[16]
X. Wang, R. Cheng, R. L. Zeng, et al. Ideal thermal physical properties of building wall in an active room. Indoor Built Env. 23 (2014) 839-853.
DOI: 10.1177/1420326x13482319
Google Scholar
[17]
HVAC Design Criterion, Standard of PR China (GBJ 19-87), Beijing, 2001. (in Chinese).
Google Scholar
[18]
Y. Zhang, Y. P. Zhang, X. Wang, et al. Ideal thermal conductivity of a passive building wall: Determination method and understanding, Appl. Energ. 112 (2013) 967-974.
DOI: 10.1016/j.apenergy.2013.04.007
Google Scholar
[19]
R. L. Zeng, X. Wang, H. F. Di, et al. New concepts and approach for developing energy efficient buildings: ideal volumetric specific heat for building internal thermal mass, Energ. Buil. 43 (2011) 1081-1090.
DOI: 10.1016/j.enbuild.2010.08.035
Google Scholar