[1]
M. A. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11 (1940) 582-592.
Google Scholar
[2]
R. S. Rivlin, Large elastic deformation of isotropic materials. I. Fundamental concepts, Philos. Trans. R. Soc. London Ser. A 240 (1948) 459-490.
Google Scholar
[3]
R. S. Rivlin, Large elastic deformation of isotropic materials. IV. Further developments of the general theory, Philos. Trans. R. Soc. London Ser. A 241 (1948) 379-397.
DOI: 10.1098/rsta.1948.0024
Google Scholar
[4]
A. N. Gent, A. G. Thomas, Forms of the stored (strain) energy function for vulcanized rubber, J. Poly. Sci. 28 (1958) 625-637.
DOI: 10.1002/pol.1958.1202811814
Google Scholar
[5]
O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol. 66 (1993) 754-771.
DOI: 10.5254/1.3538343
Google Scholar
[6]
H. Khajehsaeid, J. Arghavani, R. Naghdabadi, A hyperelastic constitutive model for rubber-like materials, Int. J. Solids Struct. 48 (2010) 265-274.
DOI: 10.1016/j.euromechsol.2012.09.010
Google Scholar
[7]
M. R. Mansouri, H. Darijani, Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach, Int. J. Solids Struct. 51 (2014) 4316-4326.
DOI: 10.1016/j.ijsolstr.2014.08.018
Google Scholar
[8]
H. M. James, E. Guth, Theory of elastic properties of rubber, J. Chem. Phys. 11 (1943) 455-481.
Google Scholar
[9]
P. J. Flory, J. Rehner Jr., Statistical mechanics of cross-linked polymer networks: I. Rubberlike elasticity, J. Chem. Phys. 11 (1943) 512–520.
DOI: 10.1063/1.1723791
Google Scholar
[10]
E. M. Arruda, M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids. 41 (1993) 389–412.
DOI: 10.1016/0022-5096(93)90013-6
Google Scholar
[11]
M. S. Song, Relationship between the structure of networks and the mechanical properties of rubber vulcanizates (I) rubber elasticity theory for vulcanizates with carbon black fillers presenting extensive deformation, J. Chem. Eng. 1 (1988).
DOI: 10.1007/bf00955884
Google Scholar
[12]
K. Martin, A 8-chain model for rubber-like materials accounting for non-affine chain deformations and topological constraints, J. Elast. 102 (2011) 99-116.
DOI: 10.1007/s10659-010-9264-7
Google Scholar
[13]
R. S. Rivlin, D. W. Saunders, Large elastic deformations of isotropic materials. vii. Experiments on the deformation of rubber. Math. Phys. Sci. 243 (1951) 251-288.
Google Scholar
[14]
L. R. G. Treloar, Stress-strain data for vulcanized rubber under various types of deformations, Trans. Farady Soc. 40 (1994) 59-70.
Google Scholar