[1]
C. F. Shih, M. D. German, Requirements for a one parameter characterization of crack tip fields by the HRR singularity. Int. J. Fract. 17(1) (1981) 27-43.
DOI: 10.1007/bf00043119
Google Scholar
[2]
T. V. Pavankumar, J. Chattopadhyay, B. K. Dutta, H. S. Kushwaha, Transferability of specimen JR- curve to straight pipes with through wall circumferential flaws. Int. J. Press. Vessel. Pip. 79(2) (2002) 127-134.
DOI: 10.1016/s0308-0161(01)00134-x
Google Scholar
[3]
K. R. Wallin. Critical assessment of the standard ASTM E 399J. n 1461, Fatigue and Fracture Mechanics,. ASTM Special Technical Publication, (2005).
Google Scholar
[4]
T. Meshii, K. Lu, Y. Fujiwarab, Extended investigation of test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the transition temperature region as a difference in the crack tip constraint - what is a loss in constraint in the TST effect on Jc?. 20th European Conference on Fracture (ECF20), Proc. Mater. Sci. 3 (2014).
DOI: 10.1016/j.mspro.2014.06.013
Google Scholar
[5]
W. L. Guo, Elastoplastic Three Dimensional Crack Border Field-I. Singular Structure of the Field. Eng. Fract. Mech. 46 (1993) 93-104.
DOI: 10.1016/0013-7944(93)90306-d
Google Scholar
[6]
H. Gao, Variation of Elastic T-stresses along Slightly Wavy 3D Crack Fronts. Int. J. Fract. 58 (1992) 241-257.
DOI: 10.1007/bf00015618
Google Scholar
[7]
V. F. González-Albuixech, E. Giner, J. Fernández-Sáez, A. Fernández-Canteli, Influence of the T33-stress on the 3-D Stress State around Corner Cracks in an Elastic Plate. Eng. Fract. Mech. 78 (2011) 412-427.
DOI: 10.1016/j.engfracmech.2010.11.003
Google Scholar
[8]
T. Meshii, T. Tanaka, Experimental T33-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 77 (2010) 867-877.
DOI: 10.1016/j.engfracmech.2010.01.014
Google Scholar
[9]
C. Ruggieri, E. Hippert. Delamination effects on fracture behavior of a pipeline steel: A numerical investigation of 3D crack front fields and constraint. Int. J. Press. Vessel. Pip. 128 (2015) 18-35.
DOI: 10.1016/j.ijpvp.2015.01.004
Google Scholar
[10]
K. J. Han, J. Shuai, X. M. Deng, et al. The effect of constraint on CTOD fracture toughness of API X65 steel. Eng. Fract. Mech. 124-125 (2014) 167-181.
DOI: 10.1016/j.engfracmech.2014.04.014
Google Scholar
[11]
T. Nakamura, D. M. Parks. Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral. Int. J. Solid. Struct. 29(13) (1992) 1597.
DOI: 10.1016/0020-7683(92)90011-h
Google Scholar
[12]
J. Qu, X. Wang, Solutions of T-stresses for quarter-elliptical corner cracks in finite thickness plates subject to tension and bending. Int. J. Press. Vessel. Pip. 83(8) (2006) 593-606.
DOI: 10.1016/j.ijpvp.2006.04.003
Google Scholar
[13]
X. Wang, R. Bell. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates subject to non-uniform stress distributions. Eng. Fract. Mech. 71(9-10) (2004) 1477.
DOI: 10.1016/s0013-7944(03)00140-1
Google Scholar
[14]
J. Zhao, W. Guo, C. She, The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack. Int. J. Fat. 29(3) (2007) 435.
DOI: 10.1016/j.ijfatigue.2006.05.005
Google Scholar
[15]
T. Lewis, X. Wang, The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions. Eng. Fract. Mech. 75(10) (2008) 3206.
DOI: 10.1016/j.engfracmech.2007.12.001
Google Scholar