New Application of Chitosan Film as a Water Vapor Cell

Article Preview

Abstract:

This study is aimed at finding a new application of chitosan film in energy conversion material. A water vapor cell in a single chip form which consists of chitosan film on the top layer, patterned gold layer in the middle and isolator substrate in the bottom layer was manufactured and used to convert water vapor into electrical power by direct chemical interaction. When the water vapor was exposed onto chitosan film surface, the chitosan film resistance changed and as a consequence, the output voltage and current could be measured. The electrical power was significantly increased by combining several cells, namely twenty cells in series, twenty cells in parallel, twenty cells in series-parallel and twenty cells in parallel-series. It was found that twenty cells in series have the highest electrical power. Furthermore, the lifetime of a water vapor cell under water vapor exposure maintained until eight months. Therefore, chitosan film has evidenced a huge potential as energy conversion material to produce a water vapor panel in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

339-345

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Shahidi, J. K. V. Arachchi, Y. J. Jeon, Food applications of chitin and chitosans, Trends Food Sci. Technol. 10 (1999) 37-51.

DOI: 10.1016/s0924-2244(99)00017-5

Google Scholar

[2] I. Corazzari, R. Nisticò, F. Turci, M. G. Faga, F. Franzoso, S. Tabasso, G. Magnacca, Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polym. Degrad. Stab. 112 (2015).

DOI: 10.1016/j.polymdegradstab.2014.12.006

Google Scholar

[3] I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, Á. Heras, Curr, Functional characterization of chitin and chitosan, Chem. Biol. 3 (2009) 203-230.

DOI: 10.2174/2212796810903020203

Google Scholar

[4] R. A. A. Muzzarelli, C. Muzzarelli, Chitosan Chemistry: Relevance to the Biomedical Sciences, Adv. Polym. Sci. 186 (2005) 151-209.

DOI: 10.1007/b136820

Google Scholar

[5] J. Chupp, A. Shellikeri, G. Palui, J. Chatterjee, Chitosan-based gel film electrolytes containing ionic liquid and lithium salt for energy storage applications, J. Appl. Polym. Sci. 132 (2015) n/a.

DOI: 10.1002/app.42143

Google Scholar

[6] S. Hassan, M. Suzuki, A. A. El-Moneim, Synthesis of MnO 2–chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application, J. Power Sources. 246 (2014) 68-73.

DOI: 10.1016/j.jpowsour.2013.06.085

Google Scholar

[7] R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO₄ nanosheets modified with chitosan and their improved performance in energy storage device, Dalton Trans. 44 (2015) 6158-6168.

DOI: 10.1039/c5dt00622h

Google Scholar

[8] Y. Y. Wang, B. H. Hou, H. Y. Lü, F. Wan, J. Wang, X. L. Wu, Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage, RSC Adv. 5 (2015) 97427-97434.

DOI: 10.1039/c5ra20933a

Google Scholar

[9] V. Mini, H. Devendrappa, Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors, Mater. Res. Express. 3 (2016) 015502.

DOI: 10.1088/2053-1591/3/1/015502

Google Scholar

[10] M. H. Buraidah, L. P. Teo, S. R. Majid, R. Yahya, R. M. Taha, A. K. Arof, Characterizations of chitosan-based polymer electrolyte photovoltaic cells, Int. J. Photoenergy. 2010 (2010) 1.

DOI: 10.1155/2010/805836

Google Scholar

[11] S. A. Mohamad, R. Yahya, Z. A. Ibrahim, A. K. Arof, Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction, Sol. Energ. Mat. Sol. Cells. 91 (2007) 1194-1198.

DOI: 10.1016/j.solmat.2007.04.002

Google Scholar

[12] M. H. Buraidah, L. P. Teo, C. M. Au Yong, S. Shah, A. K. Arof, Performance of polymer electrolyte based on chitosan blended with poly (ethylene oxide) for plasmonic dye-sensitized solar cell, Opt. Mater. 57 (2016) 202-211.

DOI: 10.1016/j.optmat.2016.04.028

Google Scholar

[13] S. N. F. Yusuf, A. D. Azzahari, R. Yahya, S. R. Majid, M. A. Careem, A. K. Arof, From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells, RSC Adv. 6 (2016).

DOI: 10.1039/c6ra04188d

Google Scholar

[14] P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R. I. Boughton, C. P. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy. 15 (2015).

DOI: 10.1016/j.nanoen.2015.02.035

Google Scholar

[15] G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors, Electrochim. Acta. 171 (2015) 13-22.

DOI: 10.1016/j.electacta.2015.05.009

Google Scholar

[16] M. Yamagata, K. Soeda, S. Ikebe, S. Yamazaki, M. Ishikawa, Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors, Electrochim. Acta. 100 (2013) 275-280.

DOI: 10.1016/j.electacta.2012.05.073

Google Scholar

[17] A. Śliwak, N. Díez, E. Miniach, G. Gryglewicz, Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors, J. Appl. Electrochem. 46 (2016) 667-677.

DOI: 10.1007/s10800-016-0955-z

Google Scholar

[18] K. W. Kim, J. S. Kim, S. W. Lee, J. K. Lee, Employment of Chitosan–linked Iron Oxides as Mesoporous Anode Materials for Improved Lithium–ion Batteries, Electrochim. Acta. 170 (2015) 146-153.

DOI: 10.1016/j.electacta.2015.04.132

Google Scholar

[19] L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, W. Chen, Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance, Electrochim. Acta. 167 (2015) 39-47.

DOI: 10.1016/j.electacta.2015.03.129

Google Scholar

[20] Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao, C. Li, H. Zhang, A. Wang, Y. Huang, Chitosan as a functional additive for high-performance lithium–sulfur batteries, J. Mater. Chem. A. 3 (2015) 15235-15240.

DOI: 10.1039/c5ta03032c

Google Scholar

[21] J. Ma, N. A. Choudhury, Y. Sahai, R. G. Buchheit, A high performance direct borohydride fuel cell employing cross-linked chitosan membrane, J. Power Sources. 196 (2011) 8257-8264.

DOI: 10.1016/j.jpowsour.2011.06.009

Google Scholar

[22] J. Ma, Y. Sahai, Chitosan biopolymer for fuel cell applications, Carbohydr. Polym. 92 (2013) 955-975.

DOI: 10.1016/j.carbpol.2012.10.015

Google Scholar

[23] N. Shaari, S. K. Kamarudin, Chitosan and alginate types of bio-membrane in fuel cell application: An overview, J. Power Sources. 289 (2015) 71-80.

DOI: 10.1016/j.jpowsour.2015.04.027

Google Scholar

[24] M. Purwanto, L. Atmaja, M. A. Mohamed, M. T. Salleh, J. Jaafar, A. F. Ismail, M. Santoso, N. Widiastuti, Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells, RSC Adv. 6 (2016).

DOI: 10.1039/c5ra22420a

Google Scholar

[25] S. L. Holder, C. H. Lee, S. R. Popuri, M. X. Zhuang, Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation, Carbohydr. Polym. 149 (2016) 251-262.

DOI: 10.1016/j.carbpol.2016.04.118

Google Scholar

[26] T. I. Nasution, I. Nainggolan, S. D. Hutagalung, K. R. Ahmad, Z. A. Ahmad, The sensing mechanism and detection of low concentration acetone using chitosan-based sensors, Sens. Actuat. B: Chem. 177 (2013) 522-528.

DOI: 10.1016/j.snb.2012.11.063

Google Scholar