[1]
F. Shahidi, J. K. V. Arachchi, Y. J. Jeon, Food applications of chitin and chitosans, Trends Food Sci. Technol. 10 (1999) 37-51.
DOI: 10.1016/s0924-2244(99)00017-5
Google Scholar
[2]
I. Corazzari, R. Nisticò, F. Turci, M. G. Faga, F. Franzoso, S. Tabasso, G. Magnacca, Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polym. Degrad. Stab. 112 (2015).
DOI: 10.1016/j.polymdegradstab.2014.12.006
Google Scholar
[3]
I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, Á. Heras, Curr, Functional characterization of chitin and chitosan, Chem. Biol. 3 (2009) 203-230.
DOI: 10.2174/2212796810903020203
Google Scholar
[4]
R. A. A. Muzzarelli, C. Muzzarelli, Chitosan Chemistry: Relevance to the Biomedical Sciences, Adv. Polym. Sci. 186 (2005) 151-209.
DOI: 10.1007/b136820
Google Scholar
[5]
J. Chupp, A. Shellikeri, G. Palui, J. Chatterjee, Chitosan-based gel film electrolytes containing ionic liquid and lithium salt for energy storage applications, J. Appl. Polym. Sci. 132 (2015) n/a.
DOI: 10.1002/app.42143
Google Scholar
[6]
S. Hassan, M. Suzuki, A. A. El-Moneim, Synthesis of MnO 2–chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application, J. Power Sources. 246 (2014) 68-73.
DOI: 10.1016/j.jpowsour.2013.06.085
Google Scholar
[7]
R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO₄ nanosheets modified with chitosan and their improved performance in energy storage device, Dalton Trans. 44 (2015) 6158-6168.
DOI: 10.1039/c5dt00622h
Google Scholar
[8]
Y. Y. Wang, B. H. Hou, H. Y. Lü, F. Wan, J. Wang, X. L. Wu, Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage, RSC Adv. 5 (2015) 97427-97434.
DOI: 10.1039/c5ra20933a
Google Scholar
[9]
V. Mini, H. Devendrappa, Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors, Mater. Res. Express. 3 (2016) 015502.
DOI: 10.1088/2053-1591/3/1/015502
Google Scholar
[10]
M. H. Buraidah, L. P. Teo, S. R. Majid, R. Yahya, R. M. Taha, A. K. Arof, Characterizations of chitosan-based polymer electrolyte photovoltaic cells, Int. J. Photoenergy. 2010 (2010) 1.
DOI: 10.1155/2010/805836
Google Scholar
[11]
S. A. Mohamad, R. Yahya, Z. A. Ibrahim, A. K. Arof, Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction, Sol. Energ. Mat. Sol. Cells. 91 (2007) 1194-1198.
DOI: 10.1016/j.solmat.2007.04.002
Google Scholar
[12]
M. H. Buraidah, L. P. Teo, C. M. Au Yong, S. Shah, A. K. Arof, Performance of polymer electrolyte based on chitosan blended with poly (ethylene oxide) for plasmonic dye-sensitized solar cell, Opt. Mater. 57 (2016) 202-211.
DOI: 10.1016/j.optmat.2016.04.028
Google Scholar
[13]
S. N. F. Yusuf, A. D. Azzahari, R. Yahya, S. R. Majid, M. A. Careem, A. K. Arof, From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells, RSC Adv. 6 (2016).
DOI: 10.1039/c6ra04188d
Google Scholar
[14]
P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R. I. Boughton, C. P. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy. 15 (2015).
DOI: 10.1016/j.nanoen.2015.02.035
Google Scholar
[15]
G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors, Electrochim. Acta. 171 (2015) 13-22.
DOI: 10.1016/j.electacta.2015.05.009
Google Scholar
[16]
M. Yamagata, K. Soeda, S. Ikebe, S. Yamazaki, M. Ishikawa, Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors, Electrochim. Acta. 100 (2013) 275-280.
DOI: 10.1016/j.electacta.2012.05.073
Google Scholar
[17]
A. Śliwak, N. Díez, E. Miniach, G. Gryglewicz, Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors, J. Appl. Electrochem. 46 (2016) 667-677.
DOI: 10.1007/s10800-016-0955-z
Google Scholar
[18]
K. W. Kim, J. S. Kim, S. W. Lee, J. K. Lee, Employment of Chitosan–linked Iron Oxides as Mesoporous Anode Materials for Improved Lithium–ion Batteries, Electrochim. Acta. 170 (2015) 146-153.
DOI: 10.1016/j.electacta.2015.04.132
Google Scholar
[19]
L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, W. Chen, Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance, Electrochim. Acta. 167 (2015) 39-47.
DOI: 10.1016/j.electacta.2015.03.129
Google Scholar
[20]
Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao, C. Li, H. Zhang, A. Wang, Y. Huang, Chitosan as a functional additive for high-performance lithium–sulfur batteries, J. Mater. Chem. A. 3 (2015) 15235-15240.
DOI: 10.1039/c5ta03032c
Google Scholar
[21]
J. Ma, N. A. Choudhury, Y. Sahai, R. G. Buchheit, A high performance direct borohydride fuel cell employing cross-linked chitosan membrane, J. Power Sources. 196 (2011) 8257-8264.
DOI: 10.1016/j.jpowsour.2011.06.009
Google Scholar
[22]
J. Ma, Y. Sahai, Chitosan biopolymer for fuel cell applications, Carbohydr. Polym. 92 (2013) 955-975.
DOI: 10.1016/j.carbpol.2012.10.015
Google Scholar
[23]
N. Shaari, S. K. Kamarudin, Chitosan and alginate types of bio-membrane in fuel cell application: An overview, J. Power Sources. 289 (2015) 71-80.
DOI: 10.1016/j.jpowsour.2015.04.027
Google Scholar
[24]
M. Purwanto, L. Atmaja, M. A. Mohamed, M. T. Salleh, J. Jaafar, A. F. Ismail, M. Santoso, N. Widiastuti, Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells, RSC Adv. 6 (2016).
DOI: 10.1039/c5ra22420a
Google Scholar
[25]
S. L. Holder, C. H. Lee, S. R. Popuri, M. X. Zhuang, Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation, Carbohydr. Polym. 149 (2016) 251-262.
DOI: 10.1016/j.carbpol.2016.04.118
Google Scholar
[26]
T. I. Nasution, I. Nainggolan, S. D. Hutagalung, K. R. Ahmad, Z. A. Ahmad, The sensing mechanism and detection of low concentration acetone using chitosan-based sensors, Sens. Actuat. B: Chem. 177 (2013) 522-528.
DOI: 10.1016/j.snb.2012.11.063
Google Scholar