Manganese Oxide/Single-Walls Carbon Nanotubes Electrodeposited Films for Supercapacitors

Article Preview

Abstract:

The manganese oxide/single-walls carbon nanotubes (SWNTs) composite films were co-deposited by the potentiodynamic method via octylphenyl polyoxyethylene ether (OP-10) mediation the growth rate of electrolysis MnO2. Octylphenyl polyoxyethylene ether (OP-10) was used to obtain SWNTs suspensions through noncovalent functionalizition. At the fixed OP-10 concentration of 0.075 mol L-1, specific capacitance (SC) of the composites raised with SWNTs concentration increased and reached a maximum at SWNT concentration of 0.75 g L-1 due to porous microstructure and good electronic conductivity of SWNTs. Moreover, appropriated OP-10 concentration benefited to not only stable SWNTs suspension but also modified MnO2 electrodeposited process for the uniform distribution of nanotubes in the composites. The microstructure and electrochemical characteristics of MnO2/SWNTs composite films were affected by the SWNTs content. The supercapacitor performances of MnO2 as the ratio of SWNTs optimized were significantly improved for the electronic and ionic transport in this film should be more balance. According to electrochemical impedance spectrum, the optimal MnO2/SWNTs composite presented low charge-transfer resistance and good frequency response. The MnO2/SWNTs composite showed the maximum SC of 421 F g-1, which was four times higher than the pure MnO2, at the current of 1 A g-1. This MnO2/SWNTs composite is a promising active material for high energy density and high power density supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-358

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/PlenumPublisher, NewYork, (1999).

Google Scholar

[2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

Google Scholar

[3] J. R. Miller, P. Simon, Materials science-Electrochemical capacitors for energy management, Science, 321 (2008) 651-652.

DOI: 10.1126/science.1158736

Google Scholar

[4] Y. Chabre, J. Pannetier, Structural and electrochemical properties of the proton / γ-MnO2 system, Prog. Solid State Chem. 23 (1995) 1-130.

DOI: 10.1016/0079-6786(94)00005-2

Google Scholar

[5] H. Y. Lee, J. B. Goodenough, Supercapacitor Behavior with KCl Electrolyte, J. Solid State Chem. 144 (1999) 220-223.

DOI: 10.1006/jssc.1998.8128

Google Scholar

[6] S. C. Pang, M. A. Anderson, T. W. Chapman, Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147 (2000) 444-450.

DOI: 10.1149/1.1393216

Google Scholar

[7] C. C. Yu, L. X. Zhang, J. L. Shi, J. L. Zhao, J. H. Gao, D. Yan, A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties, Adv. Funct. Mater. 18 (2008).

DOI: 10.1002/adfm.200701052

Google Scholar

[8] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. (2012) 797-828.

DOI: 10.1039/c1cs15060j

Google Scholar

[9] J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. Song, M. Zhang, Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities, J. Power Sources, 194 (2009) 1202-1207.

DOI: 10.1016/j.jpowsour.2009.06.006

Google Scholar

[10] D. Ganguly, D. Pahari, N. Das, P. Howli, B. Das, D. Banerjee, K. Chattopadhyay, All-amorphous CNT-MnO2 nanoflaky hybrid for improved supercapacitor applications, J. Electroanal. Chem. 778 (2016) 12-22.

DOI: 10.1016/j.jelechem.2016.08.006

Google Scholar

[11] Y. Lv, H. Q. Li, Y. Xie, S. S. Li, J. Li, Y. H. Xing, Y. J. Song, Facile synthesis and electrochemical properties of MnO2/carbon nanotubes, Particuology, 15 (2014) 34-38.

DOI: 10.1016/j.partic.2012.12.006

Google Scholar

[12] R. R. Salunkhe, H. Ahn, J. H. Kim, Y. Yamauchi, Rational design of coaxial structured carbon nanotube-manganese oxide (CNT-MnO2) for energy storage application, Nanotechnology, 26 (2015) 204004-204010.

DOI: 10.1088/0957-4484/26/20/204004

Google Scholar

[13] Y. K. Zhou, B. L. He, F. B. Zhang, H. L. Li, Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors, J. Solid State Electrochem. 8 (2004) 482-487.

DOI: 10.1007/s10008-003-0468-7

Google Scholar