Design and Simulation of Top Illuminated InGaAs PIN Photodetector for Millimeter-Wave Applications

Article Preview

Abstract:

This paper proposed a newdesign of top illuminated PIN photodetector at 1550nm wavelength for millimeter-wave applications. Device topology, structure and fabrication methods were considered in designing the photodetector. The combination material of InP/InGaAsP/InGaAs/InGaAsP was used in designing the top illuminated PIN photodetector. This PIN photodetector was targeted to produce at least 0.60A/W of responsivity with a dark current of <100nA. The design, layout, and electrical characteristics of this photodetector were carried out using SILVACO TCAD tool. The simulated results show higher responsivity value than targeted, device frequency response of -3dBm at 40GHz with targeted dark current achievable within the wavelength absorption bands specification. The results are compared with similar designs from other reported works.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

422-427

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Dentan, B. de Cremoux, Numerical simulation of the nonlinear response of a PIN photodiode under high illumination, J. Lightwave Technol. 8 (1990) 1137–1144.

DOI: 10.1109/50.57833

Google Scholar

[2] R. D. Esman, K. J. Williams, Measurement of harmonic distortion in microwave photodetectors, IEEE Photon. Technol. Lett. 2 (1990) 502–504.

DOI: 10.1109/68.56638

Google Scholar

[3] K. J. Williams, R. D. Esman, Observation of photodetector nonlinearities, Electron. Lett. 28(8) (1992) 731–733.

DOI: 10.1049/el:19920463

Google Scholar

[4] R. R. Hayes, D. L. Persechini, Nonlinearity of PIN photodetectors, IEEE Photon. Techol. Lett. 5 (1993) 70–72.

Google Scholar

[5] K. J. Williams, Nonlinear mechanisms in microwave photodetectors operated with high intrinsic region electric fields, Appl. Phys. Lett. 65(10) (1992) 1219–1221.

DOI: 10.1063/1.112076

Google Scholar

[6] A. R. Williams, A. L. Kellner, P. K. L. Yu, High frequency saturation measurements of an InGaAs/InP waveguide photodetector, Electron. Lett. 29(14) (1993) 1298–1299.

DOI: 10.1049/el:19930866

Google Scholar

[7] D. Wake, N. G. Walker, I. C. Smith, Zero-bias edge coupled InGaAs photodiodes in millimeter wave radio fiber systems, Electron. Lett. 29(21) (1993) 1879–1881.

DOI: 10.1049/el:19931251

Google Scholar

[8] J. Harari, G. Jin, F. Journet, J. Vandecasteele, J. P. Vilcot, C. Dalle, M. R. Friscourt, D. Decoster, Modeling of microwave top illuminated PIN photodetector under very high optical power, IEEE Trans. Microwave Theory Tech. 44 (1996) 1484–1487.

DOI: 10.1109/22.536032

Google Scholar

[9] J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, D. Decoster, Modeling of waveguide PIN photodetectors under very high optical power, IEEE Trans. Microwave Theory Tech. 43 (1995) 2304–2310.

DOI: 10.1109/22.414582

Google Scholar

[10] K. Kato, S. Hata, A. Kozen, J. Yoshida, K. Kawano, High efficiency 40GHz waveguide InGaAs pin photodiode employing multimode waveguide structure, IEEE Photo. Tech. Lett. 3 (1991) 9.

DOI: 10.1109/68.84505

Google Scholar

[11] K. Kato, S. Hata, A. Kozen, J. Yoshida, K. Kawano, High efficiency waveguide InGaAs pin photodiode with bandwidth of over 40GHz, IEEE Photo. Tech. Lett. 3 (1991) 5.

DOI: 10.1109/68.93883

Google Scholar

[12] I. Kimukin, N. Biyikli, B. Butun, O. Aytun, S. M. Unlu, E. Ozbay, InGaAs based high performance pin photodiodes, IEEE Photo. Tech. Lett. 14 (2002) 3.

DOI: 10.1109/68.986815

Google Scholar

[13] J. Harari, G. H. Jin, F. Journet, J. Vandecasteele, J. P. Vilcot, C. Dalle, M. R. Friscount, D. Decoster, Modelling of Microwave top illuminated pin photodetector under very high optical power, IEEE Trans. Microwave Theory Tech. 44 (1996) 8.

DOI: 10.1109/22.536032

Google Scholar

[14] K. Kato, S. Hata, K. Kawano, J. Yoshida, A. Kozen, A high efficiency 50GHz InGaAs multimode waveguide photodetector, IEEE J. Quant. Electr. 28 (1992) 12.

DOI: 10.1109/3.166466

Google Scholar

[15] S. Y. Xie, Design and Characteristics of InGaAs High Speed Photodiodes, InGaAs/InAlAs Avalanche Photodiode and Novel AlAsSb based Avalanche Photodiodes, Distertion of PhD thesis, (2012).

DOI: 10.1016/b978-0-08-102725-7.00001-5

Google Scholar

[16] B. E. A Saleh, M. C. Teich, Semiconductor Photo Detecter, Book of Fundamentals of Photonic 2nd Edition, Wiley, (2007).

Google Scholar

[17] Y. J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, U. K. Mishra, GaAs-based, 1. 55um High Speed, High Saturation power, Low-Temperature Grown GaAs Pin Photodetector, Electr. Lett. 34(12) (1998) 1253-1255.

DOI: 10.1049/el:19980852

Google Scholar

[18] J. Harari, G. H. Jin, J. P. Vilcot, D. Decoter, Theoretical study of pin photodetectors' power limitation from 2. 5 to 60GHz, IEEE Trans. Microwave Theory Tech. 45 (1997) 8.

DOI: 10.1109/22.618431

Google Scholar

[19] R. Pelzel, A Comparison of MOVPE and MBE growth technologies for III-V epitaxial structure, CS MANTECH Conference, May 2013, USA.

Google Scholar

[20] Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Yao-T. Tsai, C. L. Ho, I. M. Liu, C. C. Hong, C. C. Lin, 10-Gb/S Ingaas P-I-N Photodiodes With Wide Spectral Range And Enhanced Visible Spectral Response, IEEE Photo. Tech. Lett. 19(5) (2007).

DOI: 10.1109/lpt.2007.891645

Google Scholar

[21] S. Malyshev, A. Chizh, V. Andrievski, InGaAs p-i-n Photodiodes for Microwave Applications, 12th GaAs Symposium, (2004), pp.283-286.

Google Scholar