Experimental Assessment on Effects of Growth Rates Microalgae Scenedesmus sp. in Different Conditions of pH, Temperature, Light Intensity and Photoperiod

Article Preview

Abstract:

An experimental study using microalgae Scenedesmus sp. growth rates are conducted in varies of environmental conditions that aim to access the growth rates yields of microalgae Scenedesmus sp. tolerance and capability sustain in fluctuations condition of wastewater may permit. Synthetic aqueous of Basal Bold Medium (BBM) was used to cultivate in batch mode using reactor flask under different abiotic parameters such as pH, temperature, lux intensity and photo period. These conditions are chosen due to its influential key on microalgae growth yields, metabolism and nature of environmental where microalgae utilization took place. The initial concentrations of microalgae are kept constant at initials of 1000cells/ml as per APHA (2012) standards and other environmental factors are varies based on the nature of selected wastewater and surrounding nature. The maximum yields of Scenedesmus sp. specific growth rates subjected to abiotic conditions are pH range from pH7 to pH8, temperature is 25°C to 30°C, photoperiod is 12/12 (Light/Dark)(hr) and lux intensity of 4000. Significant of these findings shows microalgae Scenedesmus sp. can easily grow and adapt well in fluctuating of nature conditions as the optimums are precisely close to nature conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

546-551

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. A. Latiffi, R. Maya, V. A. Shanmugan, N. F. Pahazri, A. Hashim, R. M. Tajuddin, Removal Of Nutrients From Meat Food Processing Industry Wastewater By Using Microalgae Botryococcus Sp, 11(16) (2016) 9863–9867.

DOI: 10.14419/ijet.v7i4.30.28175

Google Scholar

[2] J. Suad, S. Gu, Commercialization potential of microalgae for biofuels production, Renew. Sustain. Energ. Rev. 14 (2014) 2596–2610.

Google Scholar

[3] Q. Li, Optimization of the Growth Environment of Botryococcus braunii Strain CHN 357, (MARCH). (2006) doi: 10. 1080/02705060. 2006. 9664110.

Google Scholar

[4] V. E. Mahale, B. B. Chaugule, Optimization of freshwater green alga Scenedesmus incrassatulus for biomass production and augmentation of fatty acids under abiotic stress conditions, Phykos, 43(1) (2013) 22–31.

Google Scholar

[5] B. George, I. Pancha, C. Desai, K. Chokshi, C. Paliwal, T. Ghosh, S. Mishra, Bioresource Technology Effects of different media composition , light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171 (2014).

DOI: 10.1016/j.biortech.2014.08.086

Google Scholar

[6] A. Al-Darmaki, L. Govindrajan, S. Talebi, S. Al-Rajhi, T. Al-Barwani, Z. Al-Bulashi, Cultivation and characterization of microalgae for wastewater treatment. Proc. World Congress Eng. 1 (2012) 599.

Google Scholar

[7] D. S. Shekhawat, A. Bhatnagar, M. Bhatnagar, J. Panwar, Potential of Treated Dairy Waste Water for the Cultivation of Algae and Waste Water Treatment by Algae. Univ. J. Envir. Res. Tech. 2 (2012) 101–104.

Google Scholar

[8] Y. Su, A. Mennerich, B. Urban, Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Biores. Tech, 124 (2012) 157-162.

DOI: 10.1016/j.biortech.2012.08.037

Google Scholar

[9] E. Sforza, M. Enzo, A. Bertucco, Design of microalgal biomass production in a continuous photobioreactor: An integrated experimental and modeling approach. Chem. Eng. Res. Des. 92(6) (2014) 1153–1162.

DOI: 10.1016/j.cherd.2013.08.017

Google Scholar

[10] S. L. Meseck, J. H. Alix, G. H. Wikfors, Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga , Tetraselmis chui (PLY429), 246 (2005) 393–404.

DOI: 10.1016/j.aquaculture.2005.02.034

Google Scholar

[11] H. W. Nichols, H. C. Bold, Growth media – Fresh water. In: Stein JR (ed. ) Hand Book of Physiological Methods. Cambridge University Press, Cambridge. (1965), pp.7-24.

Google Scholar

[12] APHA (AMERICAN PUBLIC HEALTH ASSOCIATION) Standard Methods for Examination of Water and Wastewater (21stedn. ), American Public Health Association, Washington DC, (2012).

Google Scholar

[13] R. A. Andersen, Algae culturing technique. Published 2005 by Elsvier Academic Press, (2005).

Google Scholar

[14] C. Zang, S. Huang, M. Wu, et al., Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Nonaquaculture Waters. Water Air and Soil Pollut. 219(1-4) (2011) 157-174.

DOI: 10.1007/s11270-010-0695-3

Google Scholar

[15] M. Zhu, X. Zhang, Y. Mao, et al., Effects of Temperature, Salinity and Illumination on the Growth of Thalassiosira sp. Marine Sci. 27(12) (2003) 58-61.

Google Scholar

[16] K. O. Cassidy, Evaluating Algal Growth At Different Temperatures. Biosyst. Agric. Eng. 3 (2011) 1–59.

Google Scholar

[17] J. F. Sanchez, J. M. Fernandez-Sevilla, F. G. Acien, M. C. Ceron, J. Perez-Parra, E. Molina-Grima. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotech. 79(5) (2008).

DOI: 10.1007/s00253-008-1494-2

Google Scholar

[18] M. E. Martinez, J. M. Jimenez, F. El Yousfi, Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour. Tech. 67(3) (1999) 233-240.

DOI: 10.1016/s0960-8524(98)00120-5

Google Scholar

[19] C. Christov, I. Pouneva, M. Bozhkova, T. Toncheva, S. Fournadzieva, T. Zafirova. Influence of temperature and methyl jasmonate on Scenedesmus incrassulatus. Biol. Plant. 44(3) (2001) 367-371.

DOI: 10.1023/a:1012490610127

Google Scholar

[20] M. Ras, L. Lardon, S. Bruno, N. Bernet, J. P. Steyer. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102 (2011) 200–206.

DOI: 10.1016/j.biortech.2010.06.146

Google Scholar

[21] T. Ren,. Primary Factors Affecting Growth of Microalgae Optimal Light Exposure Duration and Frequency, Paper 13793, (2014).

DOI: 10.31274/etd-180810-2871

Google Scholar

[22] E. Jacob-lopes, C. Henrique, G. Scoparo, L. Mara, C. Ferreira, Chemical Engineering and Processing: Process Intensification Effect of light cycles (night / day) on CO2 fixation and biomass production by microalgae in photobioreactors, 48 (2009).

DOI: 10.1016/j.cep.2008.04.007

Google Scholar

[23] C. Xue, Y. G. Qianru, T. Weifeng, H. Iqbal, N. C. Wei, L. Raymond, Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol. 102 (2011) 6005–6012.

DOI: 10.1016/j.biortech.2011.02.061

Google Scholar

[24] S. Wahidin, A. Idris, S. Raehanah, M. Shaleh, Bioresource Technology The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129 (2013) 7–11.

DOI: 10.1016/j.biortech.2012.11.032

Google Scholar

[25] R. Harun, M. Singh, G. M. Forde, M. K. Danquah. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14(3) (2010) 1037–1047.

DOI: 10.1016/j.rser.2009.11.004

Google Scholar