[1]
N. A. A. Latiffi, R. Maya, V. A. Shanmugan, N. F. Pahazri, A. Hashim, R. M. Tajuddin, Removal Of Nutrients From Meat Food Processing Industry Wastewater By Using Microalgae Botryococcus Sp, 11(16) (2016) 9863–9867.
DOI: 10.14419/ijet.v7i4.30.28175
Google Scholar
[2]
J. Suad, S. Gu, Commercialization potential of microalgae for biofuels production, Renew. Sustain. Energ. Rev. 14 (2014) 2596–2610.
Google Scholar
[3]
Q. Li, Optimization of the Growth Environment of Botryococcus braunii Strain CHN 357, (MARCH). (2006) doi: 10. 1080/02705060. 2006. 9664110.
Google Scholar
[4]
V. E. Mahale, B. B. Chaugule, Optimization of freshwater green alga Scenedesmus incrassatulus for biomass production and augmentation of fatty acids under abiotic stress conditions, Phykos, 43(1) (2013) 22–31.
Google Scholar
[5]
B. George, I. Pancha, C. Desai, K. Chokshi, C. Paliwal, T. Ghosh, S. Mishra, Bioresource Technology Effects of different media composition , light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171 (2014).
DOI: 10.1016/j.biortech.2014.08.086
Google Scholar
[6]
A. Al-Darmaki, L. Govindrajan, S. Talebi, S. Al-Rajhi, T. Al-Barwani, Z. Al-Bulashi, Cultivation and characterization of microalgae for wastewater treatment. Proc. World Congress Eng. 1 (2012) 599.
Google Scholar
[7]
D. S. Shekhawat, A. Bhatnagar, M. Bhatnagar, J. Panwar, Potential of Treated Dairy Waste Water for the Cultivation of Algae and Waste Water Treatment by Algae. Univ. J. Envir. Res. Tech. 2 (2012) 101–104.
Google Scholar
[8]
Y. Su, A. Mennerich, B. Urban, Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Biores. Tech, 124 (2012) 157-162.
DOI: 10.1016/j.biortech.2012.08.037
Google Scholar
[9]
E. Sforza, M. Enzo, A. Bertucco, Design of microalgal biomass production in a continuous photobioreactor: An integrated experimental and modeling approach. Chem. Eng. Res. Des. 92(6) (2014) 1153–1162.
DOI: 10.1016/j.cherd.2013.08.017
Google Scholar
[10]
S. L. Meseck, J. H. Alix, G. H. Wikfors, Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga , Tetraselmis chui (PLY429), 246 (2005) 393–404.
DOI: 10.1016/j.aquaculture.2005.02.034
Google Scholar
[11]
H. W. Nichols, H. C. Bold, Growth media – Fresh water. In: Stein JR (ed. ) Hand Book of Physiological Methods. Cambridge University Press, Cambridge. (1965), pp.7-24.
Google Scholar
[12]
APHA (AMERICAN PUBLIC HEALTH ASSOCIATION) Standard Methods for Examination of Water and Wastewater (21stedn. ), American Public Health Association, Washington DC, (2012).
Google Scholar
[13]
R. A. Andersen, Algae culturing technique. Published 2005 by Elsvier Academic Press, (2005).
Google Scholar
[14]
C. Zang, S. Huang, M. Wu, et al., Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Nonaquaculture Waters. Water Air and Soil Pollut. 219(1-4) (2011) 157-174.
DOI: 10.1007/s11270-010-0695-3
Google Scholar
[15]
M. Zhu, X. Zhang, Y. Mao, et al., Effects of Temperature, Salinity and Illumination on the Growth of Thalassiosira sp. Marine Sci. 27(12) (2003) 58-61.
Google Scholar
[16]
K. O. Cassidy, Evaluating Algal Growth At Different Temperatures. Biosyst. Agric. Eng. 3 (2011) 1–59.
Google Scholar
[17]
J. F. Sanchez, J. M. Fernandez-Sevilla, F. G. Acien, M. C. Ceron, J. Perez-Parra, E. Molina-Grima. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotech. 79(5) (2008).
DOI: 10.1007/s00253-008-1494-2
Google Scholar
[18]
M. E. Martinez, J. M. Jimenez, F. El Yousfi, Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour. Tech. 67(3) (1999) 233-240.
DOI: 10.1016/s0960-8524(98)00120-5
Google Scholar
[19]
C. Christov, I. Pouneva, M. Bozhkova, T. Toncheva, S. Fournadzieva, T. Zafirova. Influence of temperature and methyl jasmonate on Scenedesmus incrassulatus. Biol. Plant. 44(3) (2001) 367-371.
DOI: 10.1023/a:1012490610127
Google Scholar
[20]
M. Ras, L. Lardon, S. Bruno, N. Bernet, J. P. Steyer. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102 (2011) 200–206.
DOI: 10.1016/j.biortech.2010.06.146
Google Scholar
[21]
T. Ren,. Primary Factors Affecting Growth of Microalgae Optimal Light Exposure Duration and Frequency, Paper 13793, (2014).
DOI: 10.31274/etd-180810-2871
Google Scholar
[22]
E. Jacob-lopes, C. Henrique, G. Scoparo, L. Mara, C. Ferreira, Chemical Engineering and Processing: Process Intensification Effect of light cycles (night / day) on CO2 fixation and biomass production by microalgae in photobioreactors, 48 (2009).
DOI: 10.1016/j.cep.2008.04.007
Google Scholar
[23]
C. Xue, Y. G. Qianru, T. Weifeng, H. Iqbal, N. C. Wei, L. Raymond, Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol. 102 (2011) 6005–6012.
DOI: 10.1016/j.biortech.2011.02.061
Google Scholar
[24]
S. Wahidin, A. Idris, S. Raehanah, M. Shaleh, Bioresource Technology The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129 (2013) 7–11.
DOI: 10.1016/j.biortech.2012.11.032
Google Scholar
[25]
R. Harun, M. Singh, G. M. Forde, M. K. Danquah. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14(3) (2010) 1037–1047.
DOI: 10.1016/j.rser.2009.11.004
Google Scholar