Procedure to Analyze the Formation of Segregations Using the PLS-SEM Approach

Article Preview

Abstract:

Decreasing optimization potential concerning the weight reduction in aircraft and automotive components boost the demand for lightweight materials and new technologies. An opportunity to achieve considerable weight-savings is the application of magnesium strips produced by the novel Twin-roll casting and hot rolling technology. During the production the quality of magnesium strips can be reduced by segregations, which also influence the distribution of the mechanical properties. Exploring the formation of segregations is one research objective of this paper using the partial least squares structural equation modeling (PLS-SEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-83

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Kawalla et al., An empirical examination of the formation of the thickness profile of Twin-Roll-Cast strip, forthcoming (2017).

Google Scholar

[2] B. Frischknecht, Aluminium 77 (2001) 746-751.

Google Scholar

[3] J. Strid, Twin roll casting, a technological overview, Proceedings 3rd International Conference on Aluminium Alloys, Vol. III, Trondheim, 1992, 321-356.

Google Scholar

[4] H. Hoffmann, R. Neugebauer, G. Spur, Handbuch Umformen, Carl Hanser Verlag, München, (2012).

Google Scholar

[5] U. Albrecht-Früh, Prozeßdatengestützte Modellbildung des Banddickenprofils beim Dünnbandgießen nach dem Zweirollenverfahren, Shaker Verlag, Aachen, (1997).

Google Scholar

[6] S. Bernhard, Zur Regelung und Steuerung von Bandgießanlagen nach dem Zwei-Rollen-Verfahren, VDI-Verlag, (1993).

Google Scholar

[7] M. Enning, Beitrag zur Dickenregelung beim Gießwalzen von Bändern, VDI-Verlag, (1993).

Google Scholar

[8] M. Sarstedt et al., Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers, Journal of Family Business Strategy 5 (2) (2014) 105-115.

DOI: 10.1016/j.jfbs.2014.01.002

Google Scholar

[9] J. F. Hair, C. M. Ringle and M. Sarstedt, PLS-SEM: Indeed a silver bullet, Journal of Marketing theory and Practice 19 (2) (2011) 139-151.

DOI: 10.2753/mtp1069-6679190202

Google Scholar

[10] J. F., Hair Jr et al., A primer on partial least squares structural equation modeling (PLS-SEM), SAGE Publications, Thousand Oaks, (2017).

Google Scholar

[11] C. Kawalla, M. Hoeck, Quality assurance system for hot rolled TRC magnesium strips, Scientific Papers of Silesian University of Technology. Organization and Management Series. forthcoming (2017).

DOI: 10.29119/1641-3466.2017.100.13

Google Scholar

[12] C.M. Ringle, S. Wende and J.M. Becker. 2015. SmartPLS 3., Boenningstedt: SmartPLS GmbH, http: /www. smartpls. com.

Google Scholar

[13] J. Henseler, C.M. Ringle and M. Sarsted, Using partial least squares path modeling in advertising research: basic concepts and recent issues, in: S. Okazaki (Eds. ), Handbook of research on international advertising, Edward Elgar Publishing, Inc., 2012, pp.252-276.

DOI: 10.4337/9781781001042.00023

Google Scholar

[14] R. Weiber, D. Mühlhaus, Strukturgleichungsmodellierung: Eine anwendungsorientierte Ein-führung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS, Springer-Verlag, Berlin Heidelberg, (2014).

DOI: 10.1007/978-3-642-35012-2

Google Scholar

[15] J. Henseler, C. M. Ringle and R. R. Sinkovics, The use of partial least squares path modeling in international marketing, Advances in international marketing 20 (2009) 277-319.

DOI: 10.1108/s1474-7979(2009)0000020014

Google Scholar

[16] M. Tenenhaus et al., PLS path modelling, Computational statistics & data analysis 48 (1) (2005) 159-205.

Google Scholar

[17] J. Betzin, J. Henseler, Einführung in die Funktionsweise des PLS-Algorithmus, in: F. Bliemel (Eds. ), Handbuch PLS-Pfadmodellierung. Methode, Anwendung, Praxisbeispiele. Schäffer-Poeschel, Stuttgart, 2005, pp.49-70.

DOI: 10.15358/0340-1650-2005-2-70

Google Scholar

[18] T. Waurick. Prozessorganisation mit Lean Six Sigma: eine empirische Analyse. Springer-Verlag, Wiesbaden, (2014).

DOI: 10.1007/978-3-658-07754-9_2

Google Scholar

[19] A. Diamantopoulos, P. Riefler. Formative Indikatoren: Einige Anmerkungen zu ihrer Art, Validität und Multikollinearität. Zeitschrift für Betriebswirtschaft, 78 (2008), 1184-1196.

DOI: 10.1007/s11573-008-0099-7

Google Scholar

[20] J.F. Hair, M. Sarstedt, C.M. Ringle, J.A. Mena, 2012. An assessment of the use of partial least squares structural equation modelling in marketing research. Journal of the Academy of Marketing Science 40 (3), 414-433.

DOI: 10.1007/s11747-011-0261-6

Google Scholar

[21] S. Geisser, A predictive approach to the random effects model, Biometrika, 61 (1994) 101-107.

Google Scholar

[22] M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society, 36 (1974) 111-147.

DOI: 10.1111/j.2517-6161.1974.tb00994.x

Google Scholar