Pre-Tensioned Basalt Fibers Ropes Stitching for Masonry Strengthening against Vertical Bending: A First Experimental Insight

Article Preview

Abstract:

This paper presents the results of an experimental campaign aimed at improving the innovative technique of continuos basalt fiber (BF) stitching in order to repair the masonry panels damaged by seismic events or to enhance the seismic behavior of unreinforced masonry walls. The masonry panels were tested under out-of-plane actions, one of the common way of failure for masonry walls during an earthquake. The most significant change introduced respect to the system already tested in previous studies, is the presence of pre-tensioned elements and mechanical anchorage of the BF ropes, always with the end of proposing a dry retrofitting system. The results indicate the effectiveness of this, increasing the performance of masonry wall specimens under out-of-plane actions respect to the damaged and unreinforced conditions. Besides, this technique potentially appears fully sustainable, because it is cheap, compatible, reversible, fire, and chemical resistant, it improves but not replaces original materials and, finally, it does not substantially use synthetic adhesives. All these reasons make this novel application of BF ropes fully sustainable and specialized to architectural heritage restoration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-127

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. B. Lourenço, G. Vasconcelos, P. Medeiros and J. Gouveia, Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls, Construction and Building Materials 24 (2010).

DOI: 10.1016/j.conbuildmat.2010.04.010

Google Scholar

[2] C. Papanicolaou, T. Triantafillou and M. Lekka, Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels, Construction and Building Materials 25 (2011) 504–514. doi: 10. 1016/j. conbuildmat. 2010. 07. 018.

DOI: 10.1016/j.conbuildmat.2010.07.018

Google Scholar

[3] G. Augusti, M. Ciampoli and P. Giovenale, Seismic vulnerability of monumental buildings. Structural Safety 23 (2001) 253–274. doi: 10. 1016/S0167-4730(01)00018-2.

DOI: 10.1016/s0167-4730(01)00018-2

Google Scholar

[4] D. D'Ayala and E. Speranza, Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings, Earthquake Spectra 19 (2003) 479–509. doi: 10. 1193/1. 1599896.

DOI: 10.1193/1.1599896

Google Scholar

[5] G. Lancioni, S. Lenci and E. Quagliarini, Dynamics and failure mechanisms of ancient masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval church of S. Maria in Portuno, Engineering Structures 56 (2013).

DOI: 10.1016/j.engstruct.2013.07.027

Google Scholar

[6] E. Quagliarini, S. Lenci, Q. Piattoni, F. Bondioli, I. Bernabei, G. Lepore and M. Zaccaria, Experimental analysis of romanesque masonries made by tile and brick fragments found at the archaeological site of S. Maria in Portuno, International Journal of Architectural Heritage 8 (2014).

DOI: 10.1080/15583058.2012.683132

Google Scholar

[7] A.S. Mosallam, Out-of-plane flexural behavior of unreinforced Red Brick Walls Strengthened with FRP composites, Composites Part B: Engineering 38 (2007) 559–574. doi: 10. 1016/j. compositesb. 2006. 07. 019.

DOI: 10.1016/j.compositesb.2006.07.019

Google Scholar

[8] C.R. Willis, R. Seracino and M. C. Griffith, Out-of-plane strength of brick masonry retrofitted with horizontal NSM CFRP strips, Engineering Structures 32 (2010) 547–555. doi: 10. 1016/j. engstruct. 2009. 10. 015.

DOI: 10.1016/j.engstruct.2009.10.015

Google Scholar

[9] F. Papa and G. Zuccaro, CD Multimediale MEDEA – Manuale di Esercitazione sul Danno ed Agibilità per edifici ordinari (2001, versione muratura). CAR Progetti srl per DPC-USSN (in Italian).

Google Scholar

[10] E. Hamed and O. Rabinovitch, Failure characteristics of FRP-strengthened masonry walls under out-of-plane loads, Engineering Structures 32 (2010) 2134–2145. doi: 10. 1016/j. engstruct. 2010. 03. 016.

DOI: 10.1016/j.engstruct.2010.03.016

Google Scholar

[11] P.B. Lourenço, Structural restoration of monuments: recommendations and advances in research and practice. In Proceedings of the First International Conference on Restoration of Heritage Masonry Structures, Ain Shams University, P. (KP05) 01-16, Cairo, Egypt, (2006).

Google Scholar

[12] ICOMOS, International charter for the conservation and restoration of monuments and sites (The Venice Charter 1964), in: 2nd International Congress of Architects and Technicians of Historic Monuments, Venice, (1964).

Google Scholar

[13] C. Papanicolaou, T. Triantafillou, M. Papathanasiou and K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading, Materials and Structures 41 (2008).

DOI: 10.1617/s11527-007-9226-0

Google Scholar

[14] A.A. Dalinkevich, K. Z. Gumargalieva, S. S. Marakhovsky and A. V. Soukhanov, Modern basalt fibrous materials and basalt fiber-based polymeric composites, Journal of Natural Fibers 6 (2009) 248–271. doi: 10. 1080/ 15440470903123173.

DOI: 10.1080/15440470903123173

Google Scholar

[15] J. Militký, V. Kovačič and J. Rubnerová, Influence of thermal treatment on tensile failure of basalt fibers, Engineering Fracture Mechanics 69 (2002) 1025–1033. doi: 10. 1016/S0013-7944(01)00119-9.

DOI: 10.1016/s0013-7944(01)00119-9

Google Scholar

[16] J. Militky, V. Kovacic and V. Bajzik, Mechanical properties of basalt filaments, Fibres & Textiles in Eastern Europe 15 (2007) 64–65. doi: 10. 1177/004051759606600407.

Google Scholar

[17] H. Jamshaid, R. Mishra and J. Militky, Thermal and mechanical characterization of novel basalt woven hybrid structures, The Journal of the Textile Institute 107 (2016) 1–10. doi: 10. 1080/00405000. 2015. 1034940.

DOI: 10.1080/00405000.2015.1034940

Google Scholar

[18] E. Quagliarini, F. Monni, S. Lenci and F. Bondioli, Tensile characterization of basalt fiber rods and ropes: a first contribution, Construction and Building Materials 34 (2012) 372–380. doi: 10. 1016/j. conbuildmat. 2012. 02. 080.

DOI: 10.1016/j.conbuildmat.2012.02.080

Google Scholar

[19] E. Quagliarini, F. Monni, F. Bondioli and S. Lenci, Basalt fiber ropes and rods: durability tests for their use in building engineering, Journal of Building Engineering 5 (2016) 142–150. doi: 10. 1016/j. jobe. 2015. 12. 003.

DOI: 10.1016/j.jobe.2015.12.003

Google Scholar

[20] E. Quagliarini, F. Monni and S. Lenci, Strengthening three-leaf masonry panel with basalt fibre ropes. First experimental data, Proc. of 5th Int. Congr. on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Roma: CNR, 2011, Vol. 2, 276-283 - ISBN: 9788890563980.

DOI: 10.1063/1.4992624

Google Scholar

[21] E. Quagliarini, F. Monni and S. Lenci, Masonry strengthening through basalt fibre ropes. Experimental and analytical results, Proc. of SAHC 2012 – 8th Int. Conf. on Structural Analysis of Historical Constructions - Wroclaw, Poland, 15th-17th Oct. 2012, Vol. 2, 1905-1913 - DWE - ISBN/ISSN: 9788371252181.

DOI: 10.1201/9781315616995-75

Google Scholar

[22] E. Quagliarini, F. Monni, F. Greco and S. Lenci, Flexible repointing of historical facing-masonry column-type specimens with basalt fibers: a first insight, Journal of Cultural Heritage (2016).

DOI: 10.1016/j.culher.2016.11.003

Google Scholar

[23] F. Monni, E. Quagliarini, S. Lenci and F. Clementi, Dry masonry strengthening through basalt fibre ropes: experimental results versus out-of-plane actions, Key Engineering Materials 624 (2015).

DOI: 10.4028/www.scientific.net/kem.624.584

Google Scholar

[24] E. Quagliarini, A. Scalbi, F. Monni and S. Lenci, A novel and sustainable application of basalt fibers for strengthening unreinforced masonry walls, Journal of Natural Fibers, 14: 1 (2017), 97-111, doi: 10. 1080/15440478. 2016. 1163763.

DOI: 10.1080/15440478.2016.1163763

Google Scholar

[25] UNI EN 1015-11. 2007. Methods of test for mortar for masonry. Part 11: determination of flexural and compressive strength of hardened mortar.

DOI: 10.3403/01905442

Google Scholar

[26] UNI EN 771-1. 2011. Specification for masonry units.

Google Scholar

[27] UNI EN 772-1. 2011. Methods of test for masonry units. Part 1: determination of compressive strength.

Google Scholar

[28] UNI EN 998-2. 2010. Specification for mortar for masonry.

Google Scholar

[29] I. Papayianni and A. Tsolaki, Microstructural and mechanical strength of ancient Mortars. In Proceedings of the NATO SFS Workshop on Materials for Restoration, Thessaloniki Greece, 35–48, (1995).

Google Scholar

[30] J. Heyman, The stone skeleton, International Journal of Solids Structures 2 (1966) 249–79.

Google Scholar