[1]
P. B. Lourenço, G. Vasconcelos, P. Medeiros and J. Gouveia, Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls, Construction and Building Materials 24 (2010).
DOI: 10.1016/j.conbuildmat.2010.04.010
Google Scholar
[2]
C. Papanicolaou, T. Triantafillou and M. Lekka, Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels, Construction and Building Materials 25 (2011) 504–514. doi: 10. 1016/j. conbuildmat. 2010. 07. 018.
DOI: 10.1016/j.conbuildmat.2010.07.018
Google Scholar
[3]
G. Augusti, M. Ciampoli and P. Giovenale, Seismic vulnerability of monumental buildings. Structural Safety 23 (2001) 253–274. doi: 10. 1016/S0167-4730(01)00018-2.
DOI: 10.1016/s0167-4730(01)00018-2
Google Scholar
[4]
D. D'Ayala and E. Speranza, Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings, Earthquake Spectra 19 (2003) 479–509. doi: 10. 1193/1. 1599896.
DOI: 10.1193/1.1599896
Google Scholar
[5]
G. Lancioni, S. Lenci and E. Quagliarini, Dynamics and failure mechanisms of ancient masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval church of S. Maria in Portuno, Engineering Structures 56 (2013).
DOI: 10.1016/j.engstruct.2013.07.027
Google Scholar
[6]
E. Quagliarini, S. Lenci, Q. Piattoni, F. Bondioli, I. Bernabei, G. Lepore and M. Zaccaria, Experimental analysis of romanesque masonries made by tile and brick fragments found at the archaeological site of S. Maria in Portuno, International Journal of Architectural Heritage 8 (2014).
DOI: 10.1080/15583058.2012.683132
Google Scholar
[7]
A.S. Mosallam, Out-of-plane flexural behavior of unreinforced Red Brick Walls Strengthened with FRP composites, Composites Part B: Engineering 38 (2007) 559–574. doi: 10. 1016/j. compositesb. 2006. 07. 019.
DOI: 10.1016/j.compositesb.2006.07.019
Google Scholar
[8]
C.R. Willis, R. Seracino and M. C. Griffith, Out-of-plane strength of brick masonry retrofitted with horizontal NSM CFRP strips, Engineering Structures 32 (2010) 547–555. doi: 10. 1016/j. engstruct. 2009. 10. 015.
DOI: 10.1016/j.engstruct.2009.10.015
Google Scholar
[9]
F. Papa and G. Zuccaro, CD Multimediale MEDEA – Manuale di Esercitazione sul Danno ed Agibilità per edifici ordinari (2001, versione muratura). CAR Progetti srl per DPC-USSN (in Italian).
Google Scholar
[10]
E. Hamed and O. Rabinovitch, Failure characteristics of FRP-strengthened masonry walls under out-of-plane loads, Engineering Structures 32 (2010) 2134–2145. doi: 10. 1016/j. engstruct. 2010. 03. 016.
DOI: 10.1016/j.engstruct.2010.03.016
Google Scholar
[11]
P.B. Lourenço, Structural restoration of monuments: recommendations and advances in research and practice. In Proceedings of the First International Conference on Restoration of Heritage Masonry Structures, Ain Shams University, P. (KP05) 01-16, Cairo, Egypt, (2006).
Google Scholar
[12]
ICOMOS, International charter for the conservation and restoration of monuments and sites (The Venice Charter 1964), in: 2nd International Congress of Architects and Technicians of Historic Monuments, Venice, (1964).
Google Scholar
[13]
C. Papanicolaou, T. Triantafillou, M. Papathanasiou and K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading, Materials and Structures 41 (2008).
DOI: 10.1617/s11527-007-9226-0
Google Scholar
[14]
A.A. Dalinkevich, K. Z. Gumargalieva, S. S. Marakhovsky and A. V. Soukhanov, Modern basalt fibrous materials and basalt fiber-based polymeric composites, Journal of Natural Fibers 6 (2009) 248–271. doi: 10. 1080/ 15440470903123173.
DOI: 10.1080/15440470903123173
Google Scholar
[15]
J. Militký, V. Kovačič and J. Rubnerová, Influence of thermal treatment on tensile failure of basalt fibers, Engineering Fracture Mechanics 69 (2002) 1025–1033. doi: 10. 1016/S0013-7944(01)00119-9.
DOI: 10.1016/s0013-7944(01)00119-9
Google Scholar
[16]
J. Militky, V. Kovacic and V. Bajzik, Mechanical properties of basalt filaments, Fibres & Textiles in Eastern Europe 15 (2007) 64–65. doi: 10. 1177/004051759606600407.
Google Scholar
[17]
H. Jamshaid, R. Mishra and J. Militky, Thermal and mechanical characterization of novel basalt woven hybrid structures, The Journal of the Textile Institute 107 (2016) 1–10. doi: 10. 1080/00405000. 2015. 1034940.
DOI: 10.1080/00405000.2015.1034940
Google Scholar
[18]
E. Quagliarini, F. Monni, S. Lenci and F. Bondioli, Tensile characterization of basalt fiber rods and ropes: a first contribution, Construction and Building Materials 34 (2012) 372–380. doi: 10. 1016/j. conbuildmat. 2012. 02. 080.
DOI: 10.1016/j.conbuildmat.2012.02.080
Google Scholar
[19]
E. Quagliarini, F. Monni, F. Bondioli and S. Lenci, Basalt fiber ropes and rods: durability tests for their use in building engineering, Journal of Building Engineering 5 (2016) 142–150. doi: 10. 1016/j. jobe. 2015. 12. 003.
DOI: 10.1016/j.jobe.2015.12.003
Google Scholar
[20]
E. Quagliarini, F. Monni and S. Lenci, Strengthening three-leaf masonry panel with basalt fibre ropes. First experimental data, Proc. of 5th Int. Congr. on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Roma: CNR, 2011, Vol. 2, 276-283 - ISBN: 9788890563980.
DOI: 10.1063/1.4992624
Google Scholar
[21]
E. Quagliarini, F. Monni and S. Lenci, Masonry strengthening through basalt fibre ropes. Experimental and analytical results, Proc. of SAHC 2012 – 8th Int. Conf. on Structural Analysis of Historical Constructions - Wroclaw, Poland, 15th-17th Oct. 2012, Vol. 2, 1905-1913 - DWE - ISBN/ISSN: 9788371252181.
DOI: 10.1201/9781315616995-75
Google Scholar
[22]
E. Quagliarini, F. Monni, F. Greco and S. Lenci, Flexible repointing of historical facing-masonry column-type specimens with basalt fibers: a first insight, Journal of Cultural Heritage (2016).
DOI: 10.1016/j.culher.2016.11.003
Google Scholar
[23]
F. Monni, E. Quagliarini, S. Lenci and F. Clementi, Dry masonry strengthening through basalt fibre ropes: experimental results versus out-of-plane actions, Key Engineering Materials 624 (2015).
DOI: 10.4028/www.scientific.net/kem.624.584
Google Scholar
[24]
E. Quagliarini, A. Scalbi, F. Monni and S. Lenci, A novel and sustainable application of basalt fibers for strengthening unreinforced masonry walls, Journal of Natural Fibers, 14: 1 (2017), 97-111, doi: 10. 1080/15440478. 2016. 1163763.
DOI: 10.1080/15440478.2016.1163763
Google Scholar
[25]
UNI EN 1015-11. 2007. Methods of test for mortar for masonry. Part 11: determination of flexural and compressive strength of hardened mortar.
DOI: 10.3403/01905442
Google Scholar
[26]
UNI EN 771-1. 2011. Specification for masonry units.
Google Scholar
[27]
UNI EN 772-1. 2011. Methods of test for masonry units. Part 1: determination of compressive strength.
Google Scholar
[28]
UNI EN 998-2. 2010. Specification for mortar for masonry.
Google Scholar
[29]
I. Papayianni and A. Tsolaki, Microstructural and mechanical strength of ancient Mortars. In Proceedings of the NATO SFS Workshop on Materials for Restoration, Thessaloniki Greece, 35–48, (1995).
Google Scholar
[30]
J. Heyman, The stone skeleton, International Journal of Solids Structures 2 (1966) 249–79.
Google Scholar