Strengthening Historical Masonry with FRP or FRCM: Trends in Design Approach

Abstract:

Article Preview

Over the past two decades, composite materials, in forms of Fiber Reinforced Polymers (FRP), have been widely spread worldwide in the field of civil and monumental construction. Design guidelines and provisions were developed and provided by national and international institutions. In the last years, a new generation of materials, named Fabric Reinforced Cementitious Matrix (FRCM) were introduced as strengthening devices for concrete and masonry structures. Their application in the field of historical masonry has grown as a result of the recent Italian earthquakes. In this paper, starting from a retrospective on what has been done in recent years in the field of FRP applications, insights will be discussed for future research and applications of FRP and FRCM in heritage buildings. Some differences between FRP and FRCM materials will be highlighted, in terms of fiber-matrix interface and delamination mechanisms. The different micromechanical behavior in terms of fracture energy will be highlighted, and the macro-mechanical implications in terms of ductility will be pointed out, as a first attempt to quantify this complex problem. By considering the last innovative and pioneering applications of FRP/FRCM in heritage buildings, criteria for structural enhancement will be shown and discussed. This is done with a special focus on the ability, shown by these new technologies, to inhibit failure mechanisms in masonry artifacts.

Info:

Periodical:

Edited by:

Angelo Di Tommaso, Prof. Cristina Gentilini and Giovanni Castellazzi

Pages:

166-173

Citation:

A. Di Tommaso et al., "Strengthening Historical Masonry with FRP or FRCM: Trends in Design Approach", Key Engineering Materials, Vol. 747, pp. 166-173, 2017

Online since:

July 2017

Export:

Price:

$41.00

* - Corresponding Author

[1] A. Acciai, A. D'Ambrisi, M. De Stefano, R. Nudo, L. Feo, F. Focacci, Experimental response of FRP reinforced members without transverse reinforcement: Failure modes and design issues, Compos Part B 89 (2016) 397-407.

DOI: https://doi.org/10.1016/j.compositesb.2016.01.002

[2] A. D'Ambrisi, F. Focacci, R. Luciano, Experimental investigation on flexural behavior of timber beams repaired with CFRP plates, Composite Structures 108(1) (2014) 720-728.

DOI: https://doi.org/10.1016/j.compstruct.2013.10.005

[3] F. Capani, A. D'Ambrisi, M. De Stefano, R. Nudo, F. Focacci, R. Luciano, R. Penna, Experimental investigation on cyclic response of RC elements repaired by CFRP external reinforcing systems, Compos Part B 112 (2017) 290-299.

DOI: https://doi.org/10.1016/j.compositesb.2016.12.053

[4] American Concrete Institute, ACI 440. 2R-08 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, 2008, Farmington Hills, MI, 77 pp.

[5] CNR-DT 200 R1/2013, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, Italian National Research Council (CNR), Rome 2013, 144 pp.

[6] A. Di Tommaso, F. Focacci, Strengthening Historical Monuments with FRP: a Design Criteria Review, Composites in Construction: a Reality, ASCE (2001), ISBN 0-7844-0596-4.

DOI: https://doi.org/10.1061/40596(264)24

[7] American Concrete Institute (ACI) 549. 4R-13, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures; ACI: Farmington Hills, MI, USA, (2013).

[8] A. D'Ambrisi, F. Focacci, Flexural strengthening of RC beams with cement based composites. J Compos Constr 15(2) (2011) 707-720.

DOI: https://doi.org/10.1061/(asce)cc.1943-5614.0000218

[9] A. D'Ambrisi, L. Feo, F. Focacci, Experimental analysis on bond between PBO-FRCM strengthening materials and concrete, Compos Part B 44(1) (2013) 524–532.

DOI: https://doi.org/10.1016/j.compositesb.2012.03.011

[10] A. D'Ambrisi, L. Feo, F. Focacci, Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry, Compos Part B 46 (2013) 15-20.

DOI: https://doi.org/10.1016/j.compositesb.2012.10.018

[11] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, D.V. Oliveira, F. Paolacci, G.C. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Mater and Struct 47 (2014) 2021-(2037).

DOI: https://doi.org/10.1617/s11527-014-0360-1

[12] F.G. Carozzi, C. Poggi. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening, Compos Part B 70 (2015) 215-230.

DOI: https://doi.org/10.1016/j.compositesb.2014.10.056

[13] T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino, Matrix-fiber bond behavior in PBO FRCM composites: A fracture mechanics approach, Eng Fract Mech 117(2) (2014) 94–111.

DOI: https://doi.org/10.1016/j.engfracmech.2014.01.011

[14] C. Carloni, T. D'Antino, L.H. Sneed, C. Pellegrino, Role of the Matrix Layers in the Stress Transfer Mechanism of FRCM Composites Bonded to a Concrete Substrate. J Eng Mech 141(6) (2014).

DOI: https://doi.org/10.1061/(asce)em.1943-7889.0000883

[15] C. Carloni, D. Bournas, F. Carozzi, T. D'Antino, G. Fava, F. Focacci, G. Giacomin, G. Mantegazza, C. Pellegrino, C. Perinelli C. Poggi, Fiber reinforced composites with cementitious (Inorganic) matrix, RILEM State-of-the-Art Reports 19 (2016).

DOI: https://doi.org/10.1007/978-94-017-7336-2_9

[16] M. Malena, G de Felice, F. Focacci, C. Carloni C, The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface, Compos Part B 110 (2017) 368-380.

DOI: https://doi.org/10.1016/j.compositesb.2016.11.012

[17] C. Carloni, K.V. Subramaniam, Application of fracture mechanics to debonding of FRP from RC members, ACI SP 286-10, (2012).

[18] F. Focacci, C. Carloni, Periodic variation of the transferable load at the FRP-masonry interface. Composite Structures 129 (2015) 90-100.

DOI: https://doi.org/10.1016/j.compstruct.2015.03.008

[19] C. Carloni, F. Focacci. FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints. European Journal of Mechanics A/Solids 55 (2016) 122-133.

DOI: https://doi.org/10.1016/j.euromechsol.2015.08.003

[20] A. D'Ambrisi, F. Focacci, A. Caporale, Strengthening of masonry unreinforced concrete railway bridges with PBO-FRCM materials, Compos Struct102 (2013) 193-204.

DOI: https://doi.org/10.1016/j.compstruct.2013.03.002

[21] A. D'Ambrisi, F. Focacci, R. Luciano, V. Alecci, M. De Stefano, Carbon-FRCM materials for structural upgrade of masonry arch road bridges, Compos Part B 75 (2015) 355-366.

DOI: https://doi.org/10.1016/j.compositesb.2015.01.024

[22] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations, Compos Struct 149(1) (2016) 184-196.

DOI: https://doi.org/10.1016/j.compstruct.2016.04.030

[23] L. Rovero, F. Focacci, G. Stipo, Structural behavior of arch models strengthened using FRP strips of different lengths, J. Compos. Constr. 17(2) (2013) 249-258.

DOI: https://doi.org/10.1061/(asce)cc.1943-5614.0000325

[24] P. Foraboschi, Strengthening of masonry arches with fiber-reinforced polymer strips. J. Compos. Constr. 8(3) (2004) 191-202.

DOI: https://doi.org/10.1061/(asce)1090-0268(2004)8:3(191)

[25] P. Foraboschi, Church of San Giuliano di Puglia: Seismic repair and upgrading. Eng. Fail. Anal. 33 (2013) 281-314.

DOI: https://doi.org/10.1016/j.engfailanal.2013.05.023

[26] A. D'Ambrisi, L. Feo, F. Focacci, Masonry arches strengthened with composite unbonded tendons. Comp. Struct. 98 (2013) 323-329.

DOI: https://doi.org/10.1016/j.compstruct.2012.10.040