Collapse State of Multi-Storey Masonry Walls Reinforced by Steel Ties Subjected to In-Plane Horizontal Loads

Article Preview

Abstract:

The determination of the seismic strength of masonry building is strictly connected to the in-plane strength of masonry walls under the action of horizontal forces. Simplified criteria are currently available in literature, based on modelling of the structure as loaded by dead loads and by a gradually increasing distribution of horizontal forces, proportional to the mass of the building. According to this approach, called push-over method, the seismic strength of the building corresponds to the intensity of these gradually increasing horizontal loads, leading the building to the failure condition. This paper moves in the framework of the Limit Analysis, based on the Heyman’s masonry model (1966), rigid in compression with no tensile strength. The resistant model refers to a multi-storey wall with openings arranged in regular patterns, along both vertical and horizontal directions, reinforced at floor levels by steel ties. The in-plane failure of the regular multi-storey walls can occur with the development of various kinematically admissible mechanisms, characterized by the attainment of the yielding state in the steel ties. The proposed methodology consists in the definition of the mechanism along which the failure effectively occurs and in a subsequent check of the statical admissibility of the internal stress state at the limit load. Only in this case, the corresponding kinematical multiplier is the effective collapse multiplier. The presence of the panels situated above the openings strongly conditions the in-plane failure of the wall, acting as diagonal struts, causing different horizontal displacements between the piers at the floor levels and consequently engaging the horizontal ties in the mechanism. In order to ensure the development of the global failure, avoiding local brittle failures, steel strengths of the ties have thus to be suitably defined. Finally, a parametric investigation is carried out considering different geometries of masonry walls and varying the position of the piers self-weights and the horizontal forces distribution, constant or proportional to the height of the masses from the foundation level.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

686-693

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Calderoni, E.A. Cordasco, P. Lenza, ll comportamento strutturale delle fasce di piano degli edifici in muratura soggetti ad azioni orizzontali: indagine sperimentale, Ingegneria Sismica. 4 (2010).

Google Scholar

[2] A. Bucchi, A. Aprile and A. Tralli, Analisi pushover di costruzioni in muratura con codici di calcolo commerciali: problematiche a confronto, XIII convegno ANIDIS , Bologna, (2009).

Google Scholar

[3] J. Heyman, The stone skeleton, International Journal of solids and structures. 2(2) (1966).

Google Scholar

[4] M. Como and A. Grimaldi, Analisi limite di pareti murarie sotto spinta, Università di Napoli, Atti Istituto di Tecnica delle costruzioni, n. 546, Napoli, (1983).

Google Scholar

[5] M. Como, G. Lanni and E. Sacco, Sul calcolo delle catene di rinforzo negli edifici in muratura soggetti ad azione sismica, V° Conf. Naz. le L'Ingegneria sismica in italia, ANIDIS, Facoltà di Ingegneria, Università di Palermo, (1991).

DOI: 10.18503/1995-2732-2016-14-1-79-87

Google Scholar

[6] M. Como, Modellazioni semplici per l'analisi della resistenza sismica degli edifici in muratura, Atti del Workshop WONDERMasonry 2006, Dipartimento di Ingegneria Civile, Università di Firenze, Edizioni Polistampa Firenze, (2006).

DOI: 10.3934/krm.2009.2.425

Google Scholar

[7] S. Coccia, M. Como and F. Di Carlo, In-plane strength under seismic forces of multi-storey masonry walls reinforced by steel ties, Paper Presented at the 16th international brick and block masonry conference, June (2016).

DOI: 10.1201/b21889-16

Google Scholar

[8] S. Coccia, F. Di Carlo and S. Imperatore, Force reduction factor for out-of-plane simple mechanisms of masonry structures, Bulletin of Earthquake Engineering. (2016).

DOI: 10.1007/s10518-016-9976-6

Google Scholar

[9] S. Coccia, F. Di Carlo and S. Imperatore, Strength reduction factor for out-of-plane failure mechanisms of masonry walls, 16th International Brick and Block Masonry – Trends, Innovations and Challenges. (2016).

DOI: 10.1201/b21889-15

Google Scholar

[10] M. Como, Statics of historic masonry constructions, ed. 3, Springer, Heidelberg, (2013).

Google Scholar

[11] S. Coccia and M. Como, Minimum thrust of rounded cross vaults, International Journal of Architectural Heritage. 9(4) (2015) 468-484.

DOI: 10.1080/15583058.2013.804965

Google Scholar

[12] S. Coccia, M. Como and F. Di Carlo, Wind strength of Gothic Cathedrals, Engineering Failure Analysis, 55(2015a) 1-25.

DOI: 10.1016/j.engfailanal.2015.04.019

Google Scholar

[13] S. Coccia, F. Di Carlo and Z. Rinaldi, Collapse displacements for a mechanism of spreading-induced supports in a masonry arch, International Journal of Advanced Structural Engineering. 7(3) (2015) 307-320.

DOI: 10.1007/s40091-015-0101-x

Google Scholar

[14] S. Coccia, F. Di Carlo and G. Forino, Strength of cracked masonry buttresses under horizontal loads, Paper Presented at the 16th international brick and block masonry conference, June (2016).

DOI: 10.1201/b21889-17

Google Scholar

[15] L. Facconi, A. Conforti, F. Minelli and G.A. Plizzari, Improving shear strength of unreinforced masonry walls by nano-reinforced fibrous mortar coating, Materials and Structures, 48(8) (2015) 2557-2574.

DOI: 10.1617/s11527-014-0337-0

Google Scholar