[1]
M.F. Ashby, A.G. Evans, N.A. Fleck, et al, Metal foams: a design guide. Appl. Mech. Rev. 23(2002)119-119.
Google Scholar
[2]
P.M. Kamath, C. Balaji, S.P. Venkateshan, Convection heat transfer from aluminum and copper foams in a vertical channel – An experimental study. Int. J. Therm. Sci. 64(2013)1-10.
DOI: 10.1016/j.ijthermalsci.2012.08.015
Google Scholar
[3]
J. Banhart, Metal Foams: Production and Stability, Adv. Eng. Mater. 8(2006)781-794.
DOI: 10.1002/adem.200600071
Google Scholar
[4]
X.G. Liu, Y.X. Li, X. Chen, et al, Foam stability in gas injection foaming process, J. Mater. Sci. 45(2010)6481-6493.
DOI: 10.1007/s10853-010-4736-5
Google Scholar
[5]
Y. Liu, Y.X. Li, H.W. Zhang, et al, Effect of gasar processing parameters on structure of lotus-type porous magnesium, Rare. Metal. Mat. Eng. 34( 2005)1128-1130. (In Chinese).
Google Scholar
[6]
L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, UK: Cambridge University Press, 1997, pp.655-656.
Google Scholar
[7]
J. Banhart, Light-metal foams—history of innovation and technological challenges, Adv. Eng. Mater. 15 (2013) 82–111.
DOI: 10.1002/adem.201200217
Google Scholar
[8]
K. Huang, D.H. Yang, S.Y. He, et al, Acoustic absorption properties of open-cell Al alloy foams with graded pore size. J. Phys. D. Appl. Phys. 44 (2013)365405-365410.
DOI: 10.1088/0022-3727/44/36/365405
Google Scholar
[9]
J. Yu, X. Wang, Z.G. Wei, et al, Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core, Int. J. Impact. Eng. 28: (2003)331-347.
DOI: 10.1016/s0734-743x(02)00053-2
Google Scholar
[10]
H. Wang, D.H. Yang, S.Y. He, et al, Fabrication of open-cell Al foam core sandwich by vibration aided liquid phase bonding method and its mechanical properties, J. Mater. Sci. Technol. 26(2010)423–428.
DOI: 10.1016/s1005-0302(10)60066-7
Google Scholar
[11]
L.P. Zhang, Y. Zhao, et al, Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting, J. Compos. Mater. 41: (2007)2105-2117.
DOI: 10.1177/0021998307074132
Google Scholar
[12]
L. Licitra, D.D. Luong, O.M.S. Iii, et al, Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Mater. Des. 66(2014)504-515.
DOI: 10.1016/j.matdes.2014.03.041
Google Scholar
[13]
I.N. Orbulov, J. Ginsztler, et al. Compressive characteristics of metal matrix syntactic foams, Composites Part A, 43(2012)553-561.
DOI: 10.1016/j.compositesa.2012.01.008
Google Scholar
[14]
I.N. Orbulov. Compressive properties of aluminium matrix syntactic foams, Mater. Sci. Eng. A. 555(2012)52-56.
DOI: 10.1016/j.msea.2012.06.032
Google Scholar
[15]
I.N. Orbulov, K. Májlinger, Description of the compressive response of metal matrix syntactic foams. Mater. Des. 49(2013)1-9.
DOI: 10.1016/j.matdes.2013.02.007
Google Scholar
[16]
L. Huang, H. Wang, D.H. Yang, et al, Effects of scandium additions on mechanical properties of cellular Al-based foams. Intermetallics, 28(2012)71-76.
DOI: 10.1016/j.intermet.2012.03.050
Google Scholar
[17]
X.C. Xia, H. Feng, X. Zhang, et al, The compressive properties of closed-cell aluminum foams with different Mn additions. Mater. Des. 51(2013)797-802.
DOI: 10.1016/j.matdes.2013.05.008
Google Scholar
[18]
T. Fukui, Y. Nonaka, S. Suzuki, et al, Fabrication of Al-Cu-Mg Alloy Foams Using Mg as Thickener through Melt Route and Reinforcement of Cell Walls by Heat Treatment, Procedia Materials Science, 4: 33-37(2014).
DOI: 10.1016/j.mspro.2014.07.587
Google Scholar
[19]
L. Huang, D.H. Yang, H. Wang, et al, Effects of calcium on mechanical properties of cellular Al–Cu foams, Mater. Sci. Eng. A. 618(2014)471–478.
DOI: 10.1016/j.msea.2014.09.051
Google Scholar
[20]
Z. Zhang, J. Ding, X.C. Xia, et al. Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater. Des. 88(2015)359-365.
DOI: 10.1016/j.matdes.2015.09.017
Google Scholar
[21]
X.C. Xia , X. Chen, Z. Zhang, et al, Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Mater. Des. 56(2014)353-358.
DOI: 10.1016/j.matdes.2013.11.040
Google Scholar
[22]
A.E. Markaki, T.W. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams, Acta. Mater. 49( 2001)1677-1686.
DOI: 10.1016/s1359-6454(01)00072-6
Google Scholar
[23]
F. Campana, D. Pilone, Effect of heat treatments on the mechanical behaviour of aluminium alloy foams, Scripta. Mater. 60(2009)679-682.
DOI: 10.1016/j.scriptamat.2008.12.045
Google Scholar
[24]
A.R. Kennedy, S. Asavavisitchai. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams, Scripta. Mater. 50 (2004)115-119.
DOI: 10.1016/j.scriptamat.2003.09.026
Google Scholar
[25]
V.G. Davydov, T.D. Rostova, V.V. Zakharov, et al. Scientific principles of making an alloying addition of scandium to aluminium alloys, Mater. Sci. Eng. A , 280(2000)30-36.
DOI: 10.1016/s0921-5093(99)00652-8
Google Scholar
[26]
E.W. Andrews, L.J. Gibson, On notch-strengthening and crack tip deformation in cellular metals, Mater. Lett. 57(2002)532-536.
DOI: 10.1016/s0167-577x(02)00824-8
Google Scholar
[27]
Alloy phase diagrams, ASM Handbook, vol. 3. USA, 1992, pp, 307.
Google Scholar
[28]
M. Tan, J. Bian, K. Guan, et al. Manufacture, characterisation and application of cellular metals and metal foams, Pro. Mater. Sci. 46(2001) 559-632.
Google Scholar