Quasi-Static Compressive Characteristics of Cu-Containing Closed-Cell Aluminum Foams

Article Preview

Abstract:

Closed-cell aluminum foam with different percentages of Cu was prepared by melt foaming method.The effect of Cu element on the quasi-static compressive properties of aluminum foam was investigated, both under as-cast and heat-treated conditions. The results showed that Cu element distributed in cell wall matrix mainly in the forms of Al-Cu solid solutions and AlCu3, Al6.1Cu1.2Ti2.7 intermetallics. Meanwhile, Cu-containing foams possessed much higher compressive strength than the commercially pure aluminum foams. Additionally, proper heat treatment could further improve the yield strength of Cu-containing foams and the effect of aging treatment was more obvious than the homogenizing heat treatment under the present conditions and the reasons were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-180

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Ashby, A.G. Evans, N.A. Fleck, et al, Metal foams: a design guide. Appl. Mech. Rev. 23(2002)119-119.

Google Scholar

[2] P.M. Kamath, C. Balaji, S.P. Venkateshan, Convection heat transfer from aluminum and copper foams in a vertical channel – An experimental study. Int. J. Therm. Sci. 64(2013)1-10.

DOI: 10.1016/j.ijthermalsci.2012.08.015

Google Scholar

[3] J. Banhart, Metal Foams: Production and Stability, Adv. Eng. Mater. 8(2006)781-794.

DOI: 10.1002/adem.200600071

Google Scholar

[4] X.G. Liu, Y.X. Li, X. Chen, et al, Foam stability in gas injection foaming process, J. Mater. Sci. 45(2010)6481-6493.

DOI: 10.1007/s10853-010-4736-5

Google Scholar

[5] Y. Liu, Y.X. Li, H.W. Zhang, et al, Effect of gasar processing parameters on structure of lotus-type porous magnesium, Rare. Metal. Mat. Eng. 34( 2005)1128-1130. (In Chinese).

Google Scholar

[6] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, UK: Cambridge University Press, 1997, pp.655-656.

Google Scholar

[7] J. Banhart, Light-metal foams—history of innovation and technological challenges, Adv. Eng. Mater. 15 (2013) 82–111.

DOI: 10.1002/adem.201200217

Google Scholar

[8] K. Huang, D.H. Yang, S.Y. He, et al, Acoustic absorption properties of open-cell Al alloy foams with graded pore size. J. Phys. D. Appl. Phys. 44 (2013)365405-365410.

DOI: 10.1088/0022-3727/44/36/365405

Google Scholar

[9] J. Yu, X. Wang, Z.G. Wei, et al, Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core, Int. J. Impact. Eng. 28: (2003)331-347.

DOI: 10.1016/s0734-743x(02)00053-2

Google Scholar

[10] H. Wang, D.H. Yang, S.Y. He, et al, Fabrication of open-cell Al foam core sandwich by vibration aided liquid phase bonding method and its mechanical properties, J. Mater. Sci. Technol. 26(2010)423–428.

DOI: 10.1016/s1005-0302(10)60066-7

Google Scholar

[11] L.P. Zhang, Y. Zhao, et al, Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting, J. Compos. Mater. 41: (2007)2105-2117.

DOI: 10.1177/0021998307074132

Google Scholar

[12] L. Licitra, D.D. Luong, O.M.S. Iii, et al, Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Mater. Des. 66(2014)504-515.

DOI: 10.1016/j.matdes.2014.03.041

Google Scholar

[13] I.N. Orbulov, J. Ginsztler, et al. Compressive characteristics of metal matrix syntactic foams, Composites Part A, 43(2012)553-561.

DOI: 10.1016/j.compositesa.2012.01.008

Google Scholar

[14] I.N. Orbulov. Compressive properties of aluminium matrix syntactic foams, Mater. Sci. Eng. A. 555(2012)52-56.

DOI: 10.1016/j.msea.2012.06.032

Google Scholar

[15] I.N. Orbulov, K. Májlinger, Description of the compressive response of metal matrix syntactic foams. Mater. Des. 49(2013)1-9.

DOI: 10.1016/j.matdes.2013.02.007

Google Scholar

[16] L. Huang, H. Wang, D.H. Yang, et al, Effects of scandium additions on mechanical properties of cellular Al-based foams. Intermetallics, 28(2012)71-76.

DOI: 10.1016/j.intermet.2012.03.050

Google Scholar

[17] X.C. Xia, H. Feng, X. Zhang, et al, The compressive properties of closed-cell aluminum foams with different Mn additions. Mater. Des. 51(2013)797-802.

DOI: 10.1016/j.matdes.2013.05.008

Google Scholar

[18] T. Fukui, Y. Nonaka, S. Suzuki, et al, Fabrication of Al-Cu-Mg Alloy Foams Using Mg as Thickener through Melt Route and Reinforcement of Cell Walls by Heat Treatment, Procedia Materials Science, 4: 33-37(2014).

DOI: 10.1016/j.mspro.2014.07.587

Google Scholar

[19] L. Huang, D.H. Yang, H. Wang, et al, Effects of calcium on mechanical properties of cellular Al–Cu foams, Mater. Sci. Eng. A. 618(2014)471–478.

DOI: 10.1016/j.msea.2014.09.051

Google Scholar

[20] Z. Zhang, J. Ding, X.C. Xia, et al. Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater. Des. 88(2015)359-365.

DOI: 10.1016/j.matdes.2015.09.017

Google Scholar

[21] X.C. Xia , X. Chen, Z. Zhang, et al, Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Mater. Des. 56(2014)353-358.

DOI: 10.1016/j.matdes.2013.11.040

Google Scholar

[22] A.E. Markaki, T.W. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams, Acta. Mater. 49( 2001)1677-1686.

DOI: 10.1016/s1359-6454(01)00072-6

Google Scholar

[23] F. Campana, D. Pilone, Effect of heat treatments on the mechanical behaviour of aluminium alloy foams, Scripta. Mater. 60(2009)679-682.

DOI: 10.1016/j.scriptamat.2008.12.045

Google Scholar

[24] A.R. Kennedy, S. Asavavisitchai. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams, Scripta. Mater. 50 (2004)115-119.

DOI: 10.1016/j.scriptamat.2003.09.026

Google Scholar

[25] V.G. Davydov, T.D. Rostova, V.V. Zakharov, et al. Scientific principles of making an alloying addition of scandium to aluminium alloys, Mater. Sci. Eng. A , 280(2000)30-36.

DOI: 10.1016/s0921-5093(99)00652-8

Google Scholar

[26] E.W. Andrews, L.J. Gibson, On notch-strengthening and crack tip deformation in cellular metals, Mater. Lett. 57(2002)532-536.

DOI: 10.1016/s0167-577x(02)00824-8

Google Scholar

[27] Alloy phase diagrams, ASM Handbook, vol. 3. USA, 1992, pp, 307.

Google Scholar

[28] M. Tan, J. Bian, K. Guan, et al. Manufacture, characterisation and application of cellular metals and metal foams, Pro. Mater. Sci. 46(2001) 559-632.

Google Scholar