[1]
A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers polylactide: a critique, Eur. Polym. J. 43 (2007) 4053-4074.
DOI: 10.1016/j.eurpolymj.2007.06.045
Google Scholar
[2]
A.C. Albertsson, I.K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications, Biomacromolecules 4 (2003) 1466-1486.
DOI: 10.1021/bm034247a
Google Scholar
[3]
S. Slomkowski, S. Penczek, A. Duda, Polylactides—an overview, Polym. Adv. Technol. 25 (2014) 436-447.
DOI: 10.1002/pat.3281
Google Scholar
[4]
R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835-864.
DOI: 10.1002/mabi.200400043
Google Scholar
[5]
O.D. Cabaret, B.M. Vaca, D. Bourissou, Controlled ring-opening polymerization of lactide and glycolide, Chem. Rev. 2004; 104: 6147-76.
DOI: 10.1021/cr040002s
Google Scholar
[6]
K.M. Stridsberg, M. Ryner, A.C. Albertsson, Controlled ring-opening polymerization: polymers with designed macromolecular architecture, Adv. Polym. Sci. 157 (2002) 41-65.
DOI: 10.1007/3-540-45734-8_2
Google Scholar
[7]
H. Tsuji, Y. Ikada, Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide), Polymer 6 (1995) 2709-2716.
DOI: 10.1016/0032-3861(95)93647-5
Google Scholar
[8]
C. Annette, G. Renouf, R. John, F.F. David, E.C. Ruth, The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA, Biomaterials 26 (2005) 5771-5782.
DOI: 10.1016/j.biomaterials.2005.03.002
Google Scholar
[9]
C. Zhang, T. Zhali, L.S. Turng, Y. Dan, Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by l-lactide/caprolactone copolymer, Ind. Eng. Chem. Res. 54 (2015) 9505-9511.
DOI: 10.1021/acs.iecr.5b02134
Google Scholar
[10]
X. Wang, R.E. Prud'homme, Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films, Macromolecules 47 (2014) 668-676.
DOI: 10.1021/ma4012208
Google Scholar
[11]
N.G.V. Fundador, T. Iwata, Enhanced crystallization of poly(d-lactide) by xylan esters. Polym. Degrad. Stabil. 98 (2013) 2482-2487.
DOI: 10.1016/j.polymdegradstab.2013.06.013
Google Scholar
[12]
M.J. Jenkins, K.L. Harrison, The effect of molecular weight on the crystallization kinetics of polycaprolactone, Polym. Adv. Technol. 17 (2006) 474-478.
DOI: 10.1002/pat.733
Google Scholar
[13]
Y. He, Z. Fan, Y. Hu, T. Wu, J. Wei, S. Li, DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur. Polym. J. 43 (2007) 4431-4439.
DOI: 10.1016/j.eurpolymj.2007.07.007
Google Scholar
[14]
W. Limwanich, P. Meepowpan, K. Nalampang, R. Molloy, W. Punyodom, Kinetics and thermodynamics analysis for ring-opening polymerization of ε-caprolactone initiated by tributyltin n-butoxide using differential scanning calorimetry, J. Therm. Anal. Calorim. 119 (2014).
DOI: 10.1007/s10973-014-4111-x
Google Scholar
[15]
X.L. Wang, F.Y. Huang, Y. Zhou, Y.Z. Wang, Nonisothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites, J. Macromol. Sci. B. 48 (2009) 710-722.
DOI: 10.1080/00222340902959420
Google Scholar
[16]
J. Li, C.X. Zhou, G. Wang, Y. Tao, Q. Liu, Y. Li, Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene, Polym. Test. 21 (2002) 583-589.
DOI: 10.1016/s0142-9418(01)00128-3
Google Scholar
[17]
M. Arroyo, M.A. Lopez-Manchado, J.F. Avalos, Crystallization kinetics of polypropylene: II. effect of the addition of short glass fibres. Polymer 38 (1997) 5587-5593.
DOI: 10.1016/s0032-3861(97)00102-x
Google Scholar
[18]
M. Tadakazu, M. Toru, Crystallization behaviour of poly(l-lactide), Polymer 39 (1998) 5515-5521.
Google Scholar
[19]
M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys. 7 (1939) 1103-1112.
Google Scholar
[20]
A. Jeziorny, Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d. s. c., Polymer 19 (1978) 1142-1144.
DOI: 10.1016/0032-3861(78)90060-5
Google Scholar
[21]
T. Ozawa, Kinetics of non-isothermal crystallization, Polymer 12 (1971) 150-158.
DOI: 10.1016/0032-3861(71)90041-3
Google Scholar
[22]
P.U. Dhanvijay, V.V. Shertukede, A.K. Kalkar, Isothermal and nonisothermal crystallization kinetics of poly(ε-caprolactone), J. Appl. Polym. Sci. 124 (2012) 1333-1343.
DOI: 10.1002/app.34045
Google Scholar
[23]
Z. Xing, L. Zha, G. Yang, Thermomechanical behavior and nonisothermal crystallization kinetics of poly(ε-caprolactone) and poly(ε-caprolactone)/poly(N-vinylpyrrolidone) blends. e-Polymers 121 (2010) 1359-1371.
DOI: 10.1515/epoly.2010.10.1.1359
Google Scholar
[24]
T. Liu, Z. Mo, S. Wang, H. Zhang, Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone), Polym. Eng. Sci. 37 (1997) 568-575.
DOI: 10.1002/pen.11700
Google Scholar
[25]
H. Zhao, Y. Bian, C. Han, Q. Dong, L. Dong, Y. Gao, Enhancing cold crystallization of poly(l-lactide) by a montmorillonitic substrate favoring nucleation, Thermochim. Acta 588 (2015) 47-56.
DOI: 10.1016/j.tca.2014.05.003
Google Scholar
[26]
Z. Su, W. Guo, Y. Liu, Q. Li, C. Wu, Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite, Polym. Bull. 62 (2009) 629-642.
DOI: 10.1007/s00289-009-0047-x
Google Scholar