Influence of Molecular Weight on the Non-Isothermal Melt Crystallization of Biodegradable Poly(D-Lactide)

Article Preview

Abstract:

The influence of molecular weight of poly (D-lactide) (PDL) on the melt crystallization was successfully investigated by non-isothermal differential scanning calorimetry (DSC) technique. The synthesized PDLs with three different number average molecular weights (Mn) of 2.39×105 (PDL1), 1.09×105 (PDL2) and 0.61×105 (PDL3) were utilized in this study. From DSC kinetics analysis, it was found that the rate of PDLs crystallization increased with increasing cooling rate. Furthermore, the crystallization rate of PDLs was dependent on molecular weight and determined to be in the following order: PDL3 > PDL2 > PDL1. The crystallization mechanism was analyzed by the Avrami, Ozawa and Liu models. The mechanism of all PDLs crystallization was nucleation with three dimensional growths. Furthermore, the molecular weight of PDLs affected not only the crystallization rate but also the thermal property. As the molecular weight of PDLs increased, the melting temperature (Tm) increased but the heat of melting (∆Hm) decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-229

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers polylactide: a critique, Eur. Polym. J. 43 (2007) 4053-4074.

DOI: 10.1016/j.eurpolymj.2007.06.045

Google Scholar

[2] A.C. Albertsson, I.K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications, Biomacromolecules 4 (2003) 1466-1486.

DOI: 10.1021/bm034247a

Google Scholar

[3] S. Slomkowski, S. Penczek, A. Duda, Polylactides—an overview, Polym. Adv. Technol. 25 (2014) 436-447.

DOI: 10.1002/pat.3281

Google Scholar

[4] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[5] O.D. Cabaret, B.M. Vaca, D. Bourissou, Controlled ring-opening polymerization of lactide and glycolide, Chem. Rev. 2004; 104: 6147-76.

DOI: 10.1021/cr040002s

Google Scholar

[6] K.M. Stridsberg, M. Ryner, A.C. Albertsson, Controlled ring-opening polymerization: polymers with designed macromolecular architecture, Adv. Polym. Sci. 157 (2002) 41-65.

DOI: 10.1007/3-540-45734-8_2

Google Scholar

[7] H. Tsuji, Y. Ikada, Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide), Polymer 6 (1995) 2709-2716.

DOI: 10.1016/0032-3861(95)93647-5

Google Scholar

[8] C. Annette, G. Renouf, R. John, F.F. David, E.C. Ruth, The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA, Biomaterials 26 (2005) 5771-5782.

DOI: 10.1016/j.biomaterials.2005.03.002

Google Scholar

[9] C. Zhang, T. Zhali, L.S. Turng, Y. Dan, Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by l-lactide/caprolactone copolymer, Ind. Eng. Chem. Res. 54 (2015) 9505-9511.

DOI: 10.1021/acs.iecr.5b02134

Google Scholar

[10] X. Wang, R.E. Prud'homme, Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films, Macromolecules 47 (2014) 668-676.

DOI: 10.1021/ma4012208

Google Scholar

[11] N.G.V. Fundador, T. Iwata, Enhanced crystallization of poly(d-lactide) by xylan esters. Polym. Degrad. Stabil. 98 (2013) 2482-2487.

DOI: 10.1016/j.polymdegradstab.2013.06.013

Google Scholar

[12] M.J. Jenkins, K.L. Harrison, The effect of molecular weight on the crystallization kinetics of polycaprolactone, Polym. Adv. Technol. 17 (2006) 474-478.

DOI: 10.1002/pat.733

Google Scholar

[13] Y. He, Z. Fan, Y. Hu, T. Wu, J. Wei, S. Li, DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur. Polym. J. 43 (2007) 4431-4439.

DOI: 10.1016/j.eurpolymj.2007.07.007

Google Scholar

[14] W. Limwanich, P. Meepowpan, K. Nalampang, R. Molloy, W. Punyodom, Kinetics and thermodynamics analysis for ring-opening polymerization of ε-caprolactone initiated by tributyltin n-butoxide using differential scanning calorimetry, J. Therm. Anal. Calorim. 119 (2014).

DOI: 10.1007/s10973-014-4111-x

Google Scholar

[15] X.L. Wang, F.Y. Huang, Y. Zhou, Y.Z. Wang, Nonisothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites, J. Macromol. Sci. B. 48 (2009) 710-722.

DOI: 10.1080/00222340902959420

Google Scholar

[16] J. Li, C.X. Zhou, G. Wang, Y. Tao, Q. Liu, Y. Li, Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene, Polym. Test. 21 (2002) 583-589.

DOI: 10.1016/s0142-9418(01)00128-3

Google Scholar

[17] M. Arroyo, M.A. Lopez-Manchado, J.F. Avalos, Crystallization kinetics of polypropylene: II. effect of the addition of short glass fibres. Polymer 38 (1997) 5587-5593.

DOI: 10.1016/s0032-3861(97)00102-x

Google Scholar

[18] M. Tadakazu, M. Toru, Crystallization behaviour of poly(l-lactide), Polymer 39 (1998) 5515-5521.

Google Scholar

[19] M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys. 7 (1939) 1103-1112.

Google Scholar

[20] A. Jeziorny, Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d. s. c., Polymer 19 (1978) 1142-1144.

DOI: 10.1016/0032-3861(78)90060-5

Google Scholar

[21] T. Ozawa, Kinetics of non-isothermal crystallization, Polymer 12 (1971) 150-158.

DOI: 10.1016/0032-3861(71)90041-3

Google Scholar

[22] P.U. Dhanvijay, V.V. Shertukede, A.K. Kalkar, Isothermal and nonisothermal crystallization kinetics of poly(ε-caprolactone), J. Appl. Polym. Sci. 124 (2012) 1333-1343.

DOI: 10.1002/app.34045

Google Scholar

[23] Z. Xing, L. Zha, G. Yang, Thermomechanical behavior and nonisothermal crystallization kinetics of poly(ε-caprolactone) and poly(ε-caprolactone)/poly(N-vinylpyrrolidone) blends. e-Polymers 121 (2010) 1359-1371.

DOI: 10.1515/epoly.2010.10.1.1359

Google Scholar

[24] T. Liu, Z. Mo, S. Wang, H. Zhang, Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone), Polym. Eng. Sci. 37 (1997) 568-575.

DOI: 10.1002/pen.11700

Google Scholar

[25] H. Zhao, Y. Bian, C. Han, Q. Dong, L. Dong, Y. Gao, Enhancing cold crystallization of poly(l-lactide) by a montmorillonitic substrate favoring nucleation, Thermochim. Acta 588 (2015) 47-56.

DOI: 10.1016/j.tca.2014.05.003

Google Scholar

[26] Z. Su, W. Guo, Y. Liu, Q. Li, C. Wu, Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite, Polym. Bull. 62 (2009) 629-642.

DOI: 10.1007/s00289-009-0047-x

Google Scholar