[1]
R. Shogren, Water vapor permeability of biodegradable polymers, J. Environ. Polym. Degrad. 5 (1997) 91-95.
Google Scholar
[2]
D. Cava, E. Gimenez, R. Gavara, J.M. Lagaron, Comparative performance and barrier properties of biodegradable thermoplastics and nanobiocomposites versus PET for food packaging applications, J. Plast. Film. Sheet. 22 (2006) 265-274.
DOI: 10.1177/8756087906071354
Google Scholar
[3]
S. Wang, C. Song, G. Chen, T. Guo, J. Liu, B. Zhang, S. Takeuchi, Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polym. Degrad. Stab. 87 (2005).
DOI: 10.1016/j.polymdegradstab.2004.07.008
Google Scholar
[4]
R.K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules. 34 (2001) 9189-9192.
DOI: 10.1021/ma010780b
Google Scholar
[5]
J.H. Chang, Y.U. An, G.S. Sur, Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability, J. Polym. Sci. Part B: Polym. Phys. 41 (2003) 94-103.
DOI: 10.1002/polb.10349
Google Scholar
[6]
G.X. Chen, G.J. Hao, T.Y. Guo, M.D. Song, B. H. Zhang, Structure and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/clay nanocomposites, J. Mater. Sci. Lett. 21 (2002) 1587-1589.
Google Scholar
[7]
S.Y. Gu, C.Y. Zou, K. Zhou, J. Ren, Structure-rheology responses of polylactide/calcium carbonate composites, J. App. Polym. Sci. 114 (2009) 1648-1655.
DOI: 10.1002/app.30768
Google Scholar
[8]
G.X. Chen, G.J. Hao, T.Y. Guo, M.D. Song, B.H. Zhang, Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites, J. App. Polym. Sci. 93 (2004) 655-661.
DOI: 10.1002/app.20512
Google Scholar
[9]
L. Cabedo, D. Plackett, E. Gimenez, J. M. Lagaron, Studying the degradation of polyhydroxybutyrate-co-valerate during processing with clay-based nanofillers, J. App. Polym. Sci. 112 (2009) 3669-3676.
DOI: 10.1002/app.29945
Google Scholar
[10]
Information on http: /bura. brunel. ac. uk/handle/2438/7350.
Google Scholar
[11]
M. Kunioka, A. Tamaki, Y. Doi, Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), Macromolecules. 22 (1989) 694-697.
DOI: 10.1021/ma00192a031
Google Scholar
[12]
H. Sato, Y. Ando, H. Mitomo, Y. Ozaki, Infrared spectroscopy and X-ray diffraction studies of thermal behavior and lamella structures of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV) with PHB-type crystal structure and PHV-type crystal structure, Macromolecules. 44 (2011).
DOI: 10.1021/ma102723n
Google Scholar
[13]
F. Rybnikar, Interactions in the system isotactic polypropylene–calcite, J. Appl. Polym. Sci. 42 (1991) 2727-2737.
DOI: 10.1002/app.1991.070421011
Google Scholar
[14]
P. Supaphol, W. Harnsiri, J. Junkasem, Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic polypropylene, J. Appl. Polym. Sci. 92 (2004) 201–212.
DOI: 10.1002/app.13432
Google Scholar
[15]
Z. Gan, H. Abe, Y. Doi, Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology, Biomacromolecules. 1 (2000) 704-712.
DOI: 10.1021/bm0000541
Google Scholar
[16]
P. Bordes, E. Hablot, E. Pollet, L. Avérous, Effect of clay organomodifiers on degradation of polyhydroxyalkanoates, Polym. Degrad. Stab. 94 (2009) 789-796.
DOI: 10.1016/j.polymdegradstab.2009.01.027
Google Scholar
[17]
L.N. Carli, J.S. Crespo, R.S. Mauler, PHBV nanocomposites based on organomodified montmorillonite and halloysite: The effect of clay type on the morphology and thermal and mechanical properties, Composites: Part A. 42 (2011) 1601-1608.
DOI: 10.1016/j.compositesa.2011.07.007
Google Scholar