Morphology and Properties of Polyoxymethylene/Polypropylene/Microcrystalline Cellulose Composites

Article Preview

Abstract:

The effects of microcrystalline cellulose (MCC) on mechanical, thermal and morphological properties of polyoxymethylene (POM)/polypropylene (PP) blends at different compositions were investigated. The blends and composites were prepared by melt mixing using an internal mixer at 200°C. Scanning electron microscopy (SEM) analysis revealed phase separation between POM and PP phases due to the difference in polarity of POM and PP. When adding the MCC in the blends the morphology slightly changed due to the weak interaction between MCC and polymer phases. Incorporation of MCC at 5 phr could improve Young’s modulus of POM/PP blends. The storage modulus of the blends was improved after adding MCC 5 phr due to reinforcing effect of the MCC. The thermal properties found that the addition of MCC had no effect on the melting temperature of the blends. The blends exhibited higher decomposition temperature than pure POM. The blends showed the decomposition temperatures increased when increasing amount of PP content, which were higher than pure POM. Therefore, it may be inferred that the addition of PP could enhance the thermal stability of the POM/PP blends, but the addition of MCC did not improve the thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-269

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Harper, Handbook of Plastics Technologies: The Complete Guide to Properties and Performance, McGraw-Hill, New York, (2006).

Google Scholar

[2] P. Svoboda, D. Svobodova, P. Slobodian, T. Ougizawa, T. Inoue, Transmission electron microscopy study of phase morphology in polypropylene/ethylene-octene copolymer blends, Eur. Polym. J. 45 (2009) 1485-1492.

DOI: 10.1016/j.eurpolymj.2009.01.032

Google Scholar

[3] M. Abdelmouleh, S. Boufi, M.N. Belgacem, A.P. Duarte, A. Ben Salah, A. Gandini, Modification of cellulosic fibres with functionalized silanes: development of surface properties, Int. J. Adhes. Adhes. 24 (2004) 43-54.

DOI: 10.1016/s0143-7496(03)00099-x

Google Scholar

[4] M. Abdelmouleh, S. Boufi, M.N. Belgacem, A. Dufresne, Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading, Compos. Sci. Technol. 67 (2007) 1627-1639.

DOI: 10.1016/j.compscitech.2006.07.003

Google Scholar

[5] M.N. Belgacem, A. Gandini, The surface modification of cellulose fibres for use as reinforcing elements in composite materials, Composite Interfaces 12 (2005) 41-75.

DOI: 10.1163/1568554053542188

Google Scholar

[6] X. Ma, P.R. Chang, J. Yu, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohydr. Polym. 72 (2008) 369-375.

DOI: 10.1016/j.carbpol.2007.09.002

Google Scholar

[7] A. Kiziltas, D.J. Gardner, Y. Han, H. -S. Yang, Dynamic mechanical behavior and thermal properties of microcrystalline cellulose-filled nylon 6 composites, Thermochim. Acta 519 (2011) 38-43.

DOI: 10.1016/j.tca.2011.02.026

Google Scholar

[8] S. Wacharawichanant, P. Amorncharoen, R. Wannasirichoke, Effects of compatibilizers on morphology and properties of polyoxymethylene/polypropylene blends, Polym. Plast. Technol. Eng. 54 (2015) 1349-1357.

DOI: 10.1080/03602559.2014.996903

Google Scholar

[9] R. Bouza, S. -G. Pardo, L. Barral, M.J. Abad, Design of new polypropylene-woodflour composites: Processing and physical characterization, Polym. Compos. 30 (2009) 880-886.

DOI: 10.1002/pc.20624

Google Scholar

[10] M.K. Mohamad Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islam, M. Jawaid, Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym. 98 (2013) 139-145.

DOI: 10.1016/j.carbpol.2013.05.069

Google Scholar

[11] L. Petersson, K. Oksman, Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement, Compos. Sci. Technol. 66 (2006) 2187-2196.

DOI: 10.1016/j.compscitech.2005.12.010

Google Scholar

[12] X. Zhang, Y. Zhang, Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends, Carbohydr. Polym. 140 (2016) 374-382.

DOI: 10.1016/j.carbpol.2015.12.073

Google Scholar

[13] T. Mukherjee, M. Sani, N. Kao, R.K. Gupta, N. Quazi, S. Bhattacharya, Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation, Chem. Eng. Sci. 101 (2013) 655-662.

DOI: 10.1016/j.ces.2013.07.032

Google Scholar

[14] A.K. Bledzki, A.A. Mamun, M. Feldmann, Polyoxymethylene composites with natural and cellulose fibres: Toughness and heat deflection temperature, Compos. Sci. Technol. 72 (2012) 1870-1874.

DOI: 10.1016/j.compscitech.2012.08.004

Google Scholar

[15] L. Suryanegara, A.N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol. 69 (2009) 1187-1192.

DOI: 10.1016/j.compscitech.2009.02.022

Google Scholar

[16] N. Ploypetchara, P. Suppakul, D. Atong, C. Pechyen, Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties, Energy Procedia 56 (2014) 201-210.

DOI: 10.1016/j.egypro.2014.07.150

Google Scholar