[1]
C.A. Harper, Handbook of Plastics Technologies: The Complete Guide to Properties and Performance, McGraw-Hill, New York, (2006).
Google Scholar
[2]
P. Svoboda, D. Svobodova, P. Slobodian, T. Ougizawa, T. Inoue, Transmission electron microscopy study of phase morphology in polypropylene/ethylene-octene copolymer blends, Eur. Polym. J. 45 (2009) 1485-1492.
DOI: 10.1016/j.eurpolymj.2009.01.032
Google Scholar
[3]
M. Abdelmouleh, S. Boufi, M.N. Belgacem, A.P. Duarte, A. Ben Salah, A. Gandini, Modification of cellulosic fibres with functionalized silanes: development of surface properties, Int. J. Adhes. Adhes. 24 (2004) 43-54.
DOI: 10.1016/s0143-7496(03)00099-x
Google Scholar
[4]
M. Abdelmouleh, S. Boufi, M.N. Belgacem, A. Dufresne, Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading, Compos. Sci. Technol. 67 (2007) 1627-1639.
DOI: 10.1016/j.compscitech.2006.07.003
Google Scholar
[5]
M.N. Belgacem, A. Gandini, The surface modification of cellulose fibres for use as reinforcing elements in composite materials, Composite Interfaces 12 (2005) 41-75.
DOI: 10.1163/1568554053542188
Google Scholar
[6]
X. Ma, P.R. Chang, J. Yu, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohydr. Polym. 72 (2008) 369-375.
DOI: 10.1016/j.carbpol.2007.09.002
Google Scholar
[7]
A. Kiziltas, D.J. Gardner, Y. Han, H. -S. Yang, Dynamic mechanical behavior and thermal properties of microcrystalline cellulose-filled nylon 6 composites, Thermochim. Acta 519 (2011) 38-43.
DOI: 10.1016/j.tca.2011.02.026
Google Scholar
[8]
S. Wacharawichanant, P. Amorncharoen, R. Wannasirichoke, Effects of compatibilizers on morphology and properties of polyoxymethylene/polypropylene blends, Polym. Plast. Technol. Eng. 54 (2015) 1349-1357.
DOI: 10.1080/03602559.2014.996903
Google Scholar
[9]
R. Bouza, S. -G. Pardo, L. Barral, M.J. Abad, Design of new polypropylene-woodflour composites: Processing and physical characterization, Polym. Compos. 30 (2009) 880-886.
DOI: 10.1002/pc.20624
Google Scholar
[10]
M.K. Mohamad Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islam, M. Jawaid, Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym. 98 (2013) 139-145.
DOI: 10.1016/j.carbpol.2013.05.069
Google Scholar
[11]
L. Petersson, K. Oksman, Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement, Compos. Sci. Technol. 66 (2006) 2187-2196.
DOI: 10.1016/j.compscitech.2005.12.010
Google Scholar
[12]
X. Zhang, Y. Zhang, Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends, Carbohydr. Polym. 140 (2016) 374-382.
DOI: 10.1016/j.carbpol.2015.12.073
Google Scholar
[13]
T. Mukherjee, M. Sani, N. Kao, R.K. Gupta, N. Quazi, S. Bhattacharya, Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation, Chem. Eng. Sci. 101 (2013) 655-662.
DOI: 10.1016/j.ces.2013.07.032
Google Scholar
[14]
A.K. Bledzki, A.A. Mamun, M. Feldmann, Polyoxymethylene composites with natural and cellulose fibres: Toughness and heat deflection temperature, Compos. Sci. Technol. 72 (2012) 1870-1874.
DOI: 10.1016/j.compscitech.2012.08.004
Google Scholar
[15]
L. Suryanegara, A.N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol. 69 (2009) 1187-1192.
DOI: 10.1016/j.compscitech.2009.02.022
Google Scholar
[16]
N. Ploypetchara, P. Suppakul, D. Atong, C. Pechyen, Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties, Energy Procedia 56 (2014) 201-210.
DOI: 10.1016/j.egypro.2014.07.150
Google Scholar